Status and Prospect of Ru measurements @ Mainz

NUSYM 2017 7th international symposium on nuclear symmetry energy SEPTEMBER 4TH - 7TH / GANIL, CAEN, FRANCE

Neutron Skin for beginner

Nuclear charge radii

Where do the neutrons go?

Neutron Skin for beginner

Where do the neutrons go?

Pressure forces neutrons out against surface tension

FTTINA SFIENT

"The Search for the Nuclear Symmetry Energy" (HW)

$$E\left(\rho,\delta\right) = E\left(\rho,0\right) + E_{sym}\left(\rho\right)\delta^{2} + \mathcal{O}\left(\delta\right)^{4}$$
$$E_{sym}(\rho) = \left[S_{v} + \frac{L}{3}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_{0}}{\rho_{0}}\right)^{2}\right] + \dots$$

"The Search for the Nuclear Symmetry Energy" (HW)

$$E(\rho,\delta) = E(\rho,0) + E_{sym}(\rho)\delta^2 + \mathcal{O}(\delta)^4$$
$$E_{sym}(\rho) = \left[S_v + \frac{L}{2}\left(\frac{\rho - \rho_0}{\alpha}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_0}{\alpha}\right)^2\right] + \dots$$

3

slope parameter

 ρ_0 /

$$L = 3\rho_0 \frac{\partial E_{sym}\left(\rho\right)}{\partial \rho} \bigg|_{\rho_0}$$

 ho_0

curvature parameter

$$K_{sym} = 9\rho_0^2 \frac{\partial^2 E_{sym}\left(\rho\right)}{\partial\rho^2} \bigg|_{\rho_0}$$

...the (blind!?) search for the Nuclear Symmetry Energy

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$

$$E_{sym}(\rho) = \left[S_v + \frac{L}{3}\left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_0}{\rho_0}\right)^2\right] + \dots$$

...the (blind!?) search for the Nuclear Symmetry Energy

$$E(\rho, \delta) = E(\rho, 0) + E_{sym}(\rho) \delta^{2} + \mathcal{O}(\delta)^{4}$$

$$E_{sym}(\rho) = \left[S_v + \frac{L}{3}\left(\frac{\rho - \rho_0}{\rho_0}\right) + \frac{K_{sym}}{18}\left(\frac{\rho - \rho_0}{\rho_0}\right)^2\right] + \dots$$

The answer to the ultimate question

The answer to the ultimate question

WHY?

....do we produce these plots in the first place?!?!

The long winding road

FROM MEASURABLE OBSERVABLES TO THE NEUTRON SKIN

All observables are equal, but some observables are more equal than others ... Pedigree!

The long winding road

- How is the measured observable connected to the neutron skin?
- What are the assumptions implicit in making this connection? Impulse approximation, off-shell ambiguities, distortion effects, ...

VCETTINASFIENTI

What is actually measured? Cross section, asymmetry, spin observables, ...

- How sensitive is the extraction of the neutron radius/skin to these assumptions?
- Quantitative assessment of both statistical and systematic errors

Mainz Institute for

Neutron Skins of Nuclei: from laboratory to stars C. Horowitz, J. Piekarewicz, CS (to appear JPG)

The shortest of the roads ...

PHYSICAL REVIEW C88, 034325 (2013)

Neutron Skin@Mainz

MESA

• 1.3 GHz c.w. beam

ETTINA SFIENT

- normal conducting injector LINAC
- superconducting cavities in recirculation beamline

• ERL-mode:

100 MeV @ 10mA (unpol.)

• EB-mode:

155 MeV @ 150 µA (pol.)

Neutron Skin@Mainz

MESA

• 1.3 GHz c.w. beam

ETTINA SFIENT

- normal conducting injector LINAC
- superconducting cavities in recirculation beamline

• ERL-mode:

100 MeV @ 10mA (unpol.)

• EB-mode:

155 MeV @ 150 µA (pol.)

 $\Delta \theta$ =4° : expected rate = 8.25 GHz, A_{PV} = 0.66 ppm, P = 85%, Q ≈ 86 MeV

1440h → $\delta R_n/R_n$ = 0.52% (²⁰⁸Pb @ 155 MeV)

ONCETTINASFIENTI

The long winding road

The long winding road

.... could not lead to Rome...

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\begin{array}{c} \gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \\ & \hookrightarrow \gamma \gamma \end{array}$$

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \to \gamma\gamma$$

Photon probe interaction well understood: No ISI π^0 meson produced with \approx probability on **p AND n TO DO: Reconstruct** π^0 from $\pi^0 \rightarrow 2\gamma$ decay

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \\ \hookrightarrow \gamma\gamma$$

Coherent π⁰ photoproduction: easy and quick (A2 Coll. Phys. Rev. Lett. 112, 242502)

... shine light on the nucleus!

$$\gamma + A_{(g.s.)} \to \pi^0 + A_{(g.s.)} \to \gamma\gamma$$

ETTINASFIENT

P. Capel, F. Colomer, S. Tsaran, M. Vanderhagen

- Solution Working code for PWIA amplitudes for photoproduction $V_{\pi\gamma}^{(\lambda)}(\mathbf{k}_{\pi},\mathbf{k}_{\gamma})$
- Working code for scattering matrix $F_{\pi A}$ of π^0
 - Resolution of the Lippmann-Schwinger equation
 - Singularity of Coulomb solved : better constrains on $U^{\mathrm{Nucl}}(k',k)$
- $\hfill\square$ DWIA amplitudes calculation
 - Off-shell photoproduction amplitudes $V^{(\lambda)}_{\pi\gamma}({f k}'_\pi,{f k}_\gamma)$
- $\hfill\square$ Devise a better form for $U^{\rm Nucl}(k',k)$
 - + Treatment of Resonances,
 - + Use Effective Potentials (J. Piekarewicz)
 - + Sensitivity of σ_{coherent} to neutron density
 - + Benchmark theory with A/Z and Z variation

...it is a long way till Rome ...

Status and Piospect of Ru Measurements at Mainz

The Good...

Status and Prospect of Ru Measurements at Mainz

The Good...

The Bad...

Status and Piospect of Ru Measurements at Mainz

The Good...

AND THE UGLY

56th International Winter Meeting on Nuclear Physics

22-26 January 2018 Bormio, Italy

Proceedings General Information NEWS 2018 Edition! **Previous Conferences** Registration -Home Enter keywords... PRE-CONFERENC Long-standing conference bringing together researchers and students from various fields of subatomic physics. The conference location is Bormio, a beautiful mountain resort in the Italian Alps. DEADLINES October 29: Student's fellowship application October 29: Registration and abstract submission December 1 : Notification of abstract acceptance and accommodation Ne missed you! **PRISMA** DSFB₫ IG U

OF THE STANDARD MODEL

Trivial? It is a long winding road ..

Trivial? It is a long winding road ...

	• •	•••
electric charge	1	0
weak charge	≈0.07	1

Non-PV e-scattering

Electron scattering γ exchange provides R_p through nucleus FFs

PV e-scattering

Electron also exchange Z, which is parity violating

Primarily couples to neutron

Trivial? It is a long winding road ...

Theory informing experiment

Quantitative assessment of both statistical and systematic errors; theory must provide error bars!

Uncertainty quantification and covariance analysis (theoretical errors & correlations)

Is there a need for more than one Q-square point?

CONCETTINASFIENTI

Radius and diffuseness ... the whole form factor?

- Precision required in the determination of the neutron radius/skin?
- As precisely as "humanly possible" fundamental nuclear structure property
- To strongly impact Astrophysics?
- What astrophysical observables to benchmark?
 - Is there a need for a systematic study over "many" nuclei? PREX, CREX, SREX, ZREX, ...

Mainz Institute for

Neutron Skins of Nuclei: from laboratory to stars

C. Horowitz, J. Piekarewicz, CS (to appear JPG)

 $\Delta \theta$ =4° : expected rate = 0.87 GHz, A_{PV} = 2.14 ppm, P = 85%, Q ≈ 143 MeV

1440h → $\delta R_n/R_n$ = 0.38% (⁴⁸Ca @ 200 MeV)

CONCETTINASFIENTI