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Hartree-Fock approach

The theoretical advantages of a Hartree-Fock (HF) approach

HF theory is a method of the simplest approximation for solving the
many-body system.
The N-body wave function of the system is approximated by a
single Slater determinant.
Antisymmetry of the wave function can be satisfied.

“Pauli exclusion principle”

Nuclear tensor force can be included automatically via exchange
(Fock) diagrams.

S12 = 3 (σ1 · q) (σ2 · q) − σ1 · σ2q
2,

In a relativistic framework, the nuclear tensor force is also seen in
the exchange (Fock) diagrams.

L. J. Jiang, S. Yang, J. M. Dong, and W. H. Long, Phys. Rev. C 91, 025802 (2015).
L. J. Jiang, S. Yang, B. Y. Sun, W. H. Long, and H. Q. Gu, Phys. Rev.=C 91, 034326 (2015).
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Neutron-star matter

The advantage of the relativisic Hartree-Fock
(RHF) calculation is also seen in dense nuclear
matter.
⇒ Equation of state for neutron stars

Fock contribution suppresses the hyperon
appearance in the core of neutron stars.
The maximum mass of a neutron star can
reach the 2M⊙, even if the hyperons are
taken into account.
The radius of a neutron star in the RHF
model becomes smaller than that in the RH
models.

√ Fock terms play a important role in supporting
a massive neutron star.
TM, T. Katayama, and K. Saito, Phys. Lett. B 709, 242 (2012).

TM, T. Katayama, and K. Saito, Astrophys. J. Suppl. 203, 22 (2012).
TM, M. K. Cheoun, and K. Saito, Phys. Rev. C 88, 015802 (2013).
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Motivation

There are many theoretical studies which are focused on the nuclear
properties around the normal nuclear matter density.

Non-relativistic framework:
If we consider the properties of dense nuclear matter or
neutron-star matter, “relativity” may affect the equation of state.
Relativistic mean-field theory:
Only the direct diagram is included and the exchange contribution
is not considered.
Called relativistic Hartree (RH) models

Our aim:
Using the relativistic Hartree-Fock approximation, we study the
nuclear properties not only around the saturation density but also
at higher densities.
Nuclear symmetry energy and Fock contribution.
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Nucleon self-energy

The nucleon self-energy is given by the Lorentz covariant form with
scalar (s), time (0), and space (v) components.

ΣN(k) = Σs
N(k) − γ0Σ

0
N(k) +

(⃗
γ · k̂

)
Σv
N, N = n, p.

Within the relativistic Hartree-Fock approximation, the ΣN is composed
of the direct and exchange diagrams.

Σi
N(k) = Σ

i,dir
N + Σi,ex

N , i = s, 0, v.

Inserting this form into the Dirac equation, we get the effective nucleon
mass and momentum in nuclear matter.

M∗
N(k) = MN + Σs

N(k), k∗N(k) =
(
k0 + Σ0

N(k), k⃗ + k̂Σv
N(k)

)
.

ΣN

direct exchange
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RHF calculation for nuclear matter
Lagrangian density for uniform hadronic matter:

L = LN + LM + Lint.

Interaction Lagrangian density: mesons (σ, ω, π⃗, and ρ⃗)

Lint =
∑
N=n,p

(Lσ + Lω + Lπ + Lρ) ,

Lσ = gσN ψ̄NσψN,
Lω = − gωN ψ̄NγµωµψN,

Lπ = −
fπN
mπ

ψ̄Nγ5γµ∂µπ⃗ψN · τ⃗N,

Lρ = − gρN ψ̄Nγµρ⃗ µψN · τ⃗N +
fρN
2M

ψ̄Nσµν∂νρ⃗ µψN · τ⃗N.

The following nonlinear term is also introduced in order to reproduce the
saturation properties of nuclear matter at the mean-field level.

UNL =
1
3
g2σ̄3 +

1
4
g3σ̄4.

scalar

vector

pseudovector

vector tensor

'
&

$
%

We fit the π-N and ρ-N coupling
constants to their well-known
physical values: fπN2/4π = 0.08

and gρN2/4π = 0.55.�
�

�
�fρN/gρN = 6.0.

(πN-scattering data)
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Coupling constants and USEP
N

Relativistic Hartree-Fock calculations with enhanced Fock contribution
(RHF-EFC)Coupling constants, gσN, gωN, g2, and g3

are determined in order to reproduce
the saturation properties at the normal
nuclear matter density, ρ0 = 0.16 fm−3.

E = −0.16 MeV,
p = 0,
M∗

N/MN = 0.70,

K0 = 250 MeV.

We introduce a form factor and a weight
parameter at each exchange vertex:

gMN → gMNwM
1(

1 − p2/Λ2
i

)2 , M = σ, ω, ρ.
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Esym = 32.5 MeV nucleon size

USEP
N (k, ϵk) = ΣsN(k) −

EN(k)
MN

Σ0
N(k)

+ 1
2MN

([
ΣsN(k)

]2
−
[
Σ0
N(k)

]2)

(= EN(k) −MN)

the Dirac phenomenology of
elastic proton-nucleus scattering data
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Numerical results
Nuclear matter properties at the saturation density

and its momentum dependence

Nuclear symmetry energy
Esym(ρB) = Ekin

sym(ρB) + E
pot,dir
sym (ρB) + E

pot,ex
sym (ρB)

=
1
6

k∗F
E∗
F
kF +

1
2

g2ρN
m2
ρ
ρB

+
1
8
ρB

(M∗
F

E∗
F

[
∂Σex,s

F (ρB)
]
−
[
∂Σex,0

F (ρB)
]
+
k∗F
E∗
F

[
∂Σex,v

F (ρB)
])

,

with ρB = ρn + ρp and

[
∂Σex,i

F (ρB)
]
=
(

∂
∂ρp

−
∂
∂ρn

)[
Σex,i
p (kFp ) − Σ

ex,i
n (kFn )

]
ρ3=0

, i = s, 0, v.
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Nuclear symmetry energy
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Nuclear symmetry energy
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Nuclear symmetry energy

-60

-40

-20

0

20

40

60

80

RH RH+pion RHF RHF-EFC1 RHF-EFC2 RHF-EFC3

E
sy

m
(M

e
V

)

total
kin.

pot. scalar (ex.)
pot. time (ex.)
pot. time (dir.)

pot. space (ex.)

Fock contribution becomes large.⇒
32.5 (fitted)

23.5 26.7 46.3

∼ 16 MeV

= 7.2 MeV

T. Miyatsu et al. — Nuclear symmetry energy in the RHF approximation — 10/15



Outline Introduction Theoretical framework Numerical results Summary

Nuclear symmetry energy
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Nuclear symmetry energy
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Numerical results
Density dependence of nuclear matter properties

Binding energy for symmetric nuclear and pure neutron matter
Nuclear symmetry energy
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Nuclear binding energy
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Symmetry energy
Nuclear symmetry energy can be divided
into the kinetic and potential parts.
Esym(ρB) = Ekin

sym(ρB) + E
pot,dir
sym (ρB) + E

pot,ex
sym (ρB).�
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6
k∗F
E∗
F
kF 1

2
g2ρN
m2
ρ
ρB Fock

Fock contribution is composed of the scalar
(s), time(0), and space(v) components.
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Fock contribution of symmetry energy
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Summary

Using the relativistic Hartree-Fock approximation, we study how
the Fock contribution affects nuclear symmetry energy at higher
densities as well as at the saturation density.

Saturation density, ρ0:
We estimate the strength of nuclear symmetry energy.

Esym(ρ0) = Ekin
sym(ρ0) + E

pot,dir
sym (ρ0) + Epot,ex

sym (ρ0),

Higher densities:
Fock contribution increases nuclear symmetry energy.

Time (0) component of Epot,ex
sym (ρB) becomes dominant as the density

increases.
We have to consider the space (v) component as well as scalar (s)
and time (0) components self-consistently.

32.5 MeV ∼ 16.1 MeV, 7.2 MeV, 9.2 MeV

.

�� ��
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Lorentz covariant decomposition of ϵ and Esym

Energy density for nuclear matter:

ϵ = ϵnucl + ϵNL

=
∑
N=n,p

1
π2

∫ kFN

0
dk k2

[
ekinN (k) + epotN (k)

]
−
1
2

( 1
3
g2σ̄3 +

1
2
σ̄4
)
,

with
ekinN (k) = E∗

N(k), epotN (k) = −
1
2

[
Σs
N(k)M

∗
N(k)

E∗
N(k)

+ Σ0
N(k) +

Σv
N(K)k

∗
N(k)

E∗
N(k)

]
.

Nuclear symmetry energy: ρB = ρn + ρp and ρ3 = ρp − ρn.

Esym(ρB) =
1
2
ρB

∂2E(ρB, ρ3)
∂ρ23


ρ3=0, ρB:fixed

= Ekin
sym(ρB) + E

pot,dir
sym (ρB) + E

pot,ex
sym (ρB)

=
1
6

k∗F
E∗
F
kF +

1
2

g2ρN
m2
ρ
ρB +

1
8
ρB

(M∗
F

E∗
F

[
∂Σex,s

F (ρB)
]
−
[
∂Σex,0

F (ρB)
]
+
k∗F
E∗
F

[
∂Σex,v

F (ρB)
])

,

with [
∂Σex,i

F (ρB)
]
=
(

∂
∂ρp

−
∂
∂ρn

)[
Σex,i
p (kFp ) − Σ

ex,i
n (kFn )

]
ρ3=0

, i = s, 0, v.
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Nucleon self-energy at ρ0
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Matter properties
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Slope parameter
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Pressure: SNM
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Pressure: PNM
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Nucleon effective mass
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