Density and momentum dependence of nuclear symmetry energy in the relativistic Hartree-Fock approximation

Tsuyoshi Miyatsu

Department of Physics, Faculty of Science and Technology, Tokyo University of Science, Japan

> in collaboration with Myung-Ki Cheoun (Soongsil University), Chikako Ishizuka (Tokyo Institute of Technology), Kyungsik Kim (Korea Aerospace University), Tomoyuki Maruyama (Nihon University), and Koichi Saito (Tokyo University of Science)

7th International Symposium on Nuclear Symmetry Energy (NuSYM17) @ GANIL, Caen, France September 5, 2017

Table of contents

1 Introduction

2 Theoretical framework

3 Numerical results

 Nuclear matter properties at the saturation density and its momentum dependence

2/15

Density dependence of nuclear matter properties

4 Summary

Hartree-Fock approach

The theoretical advantages of a Hartree-Fock (HF) approach

- HF theory is a method of the simplest approximation for solving the many-body system.
- The N-body wave function of the system is approximated by a single Slater determinant.
- Antisymmetry of the wave function can be satisfied. "Pauli exclusion principle"
- Nuclear tensor force can be included automatically via exchange (Fock) diagrams.

$$\mathsf{S}_{12}$$
 = $\Im(\sigma_1 \cdot q)(\sigma_2 \cdot q) - \sigma_1 \cdot \sigma_2 q^2$,

In a relativistic framework, the nuclear tensor force is also seen in the exchange (Fock) diagrams.

> L. J. Jiang, S. Yang, J. M. Dong, and W. H. Long, Phys. Rev. C **91**, 025802 (2015). L. J. Jiang, S. Yang, B. Y. Sun, W. H. Long, and H. Q. Gu, Phys. Rev.=C **91**, 034326 (2015).

Neutron-star matter

The advantage of the relativisic Hartree-Fock (RHF) calculation is also seen in dense nuclear matter.

Equation of state for neutron stars

- Fock contribution suppresses the hyperon appearance in the core of neutron stars.
- The maximum mass of a neutron star can reach the $2M_{\odot}$, even if the hyperons are taken into account.
- The radius of a neutron star in the RHF model becomes smaller than that in the RH models.
- Fock terms play a important role in supporting a massive neutron star.

TM, T. Katayama, and K. Saito, Phys. Lett. B 709, 242 (2012).
 TM, T. Katayama, and K. Saito, Astrophys. J. Suppl. 203, 22 (2012).
 TM, M. K. Cheoun, and K. Saito, Phys. Rev. C 88, 015802 (2013).

Motivation

There are many theoretical studies which are focused on the nuclear properties around the normal nuclear matter density.

Non-relativistic framework:

If we consider the properties of dense nuclear matter or neutron-star matter, "relativity" may affect the equation of state.

Relativistic mean-field theory:

Only the direct diagram is included and the exchange contribution is not considered. Called relativistic Hartree (RH) models

Our aim:

- Using the relativistic Hartree-Fock approximation, we study the nuclear properties not only around the saturation density but also at higher densities.
- Nuclear symmetry energy and Fock contribution.

Nucleon self-energy

The nucleon self-energy is given by the Lorentz covariant form with scalar (s), time (0), and space (v) components.

$$\Sigma_{N}(k) = \Sigma_{N}^{s}(k) - \gamma_{0}\Sigma_{N}^{0}(k) + \left(\vec{v}\cdot\hat{k}\right)\Sigma_{N}^{v}, \quad N = n, p$$

Within the relativistic Hartree-Fock approximation, the Σ_N is composed of the direct and exchange diagrams.

Inserting this form into the Dirac equation, we get the effective nucleon mass and momentum in nuclear matter.

$$\mathsf{M}_{\mathsf{N}}^{*}(\mathsf{k}) = \mathsf{M}_{\mathsf{N}} + \Sigma_{\mathsf{N}}^{s}(\mathsf{k}), \quad \mathsf{k}_{\mathsf{N}}^{*}(\mathsf{k}) = \left(\mathsf{k}^{\mathsf{O}} + \Sigma_{\mathsf{N}}^{\mathsf{O}}(\mathsf{k}), \vec{\mathsf{k}} + \hat{\mathsf{k}}\Sigma_{\mathsf{N}}^{\vee}(\mathsf{k})\right).$$

RHF calculation for nuclear matter

Lagrangian density for uniform hadronic matter:

$$\mathcal{L} = \mathcal{L}_{N} + \mathcal{L}_{M} + \mathcal{L}_{int}$$
.

Interaction Lagrangian density: mesons (σ , ω , $\vec{\pi}$, and $\vec{\rho}$)

$$\mathcal{L}_{int} = \sum_{N=n,p} (\mathcal{L}_{\sigma} + \mathcal{L}_{w} + \mathcal{L}_{\pi} + \mathcal{L}_{\rho}),$$
scalar
$$\mathcal{L}_{\sigma} = g_{\sigma N} \bar{\psi}_{N} \sigma \psi_{N},$$
vector
$$\mathcal{L}_{\omega} = -g_{\omega N} \bar{\psi}_{N} \gamma_{\mu} \omega^{\mu} \psi_{N},$$
pseudovector
$$\mathcal{L}_{\pi} = -\frac{f_{\pi N}}{m_{\pi}} \bar{\psi}_{N} \gamma_{5} \gamma_{\mu} \partial^{\mu} \bar{\pi} \psi_{N} \cdot \vec{\tau}_{N},$$

$$\mathcal{L}_{\rho} = -g_{\rho N} \bar{\psi}_{N} \gamma_{\mu} \rho^{\mu} \psi_{N} \cdot \vec{\tau}_{N} + \frac{f_{\rho N}}{2\mathcal{M}} \bar{\psi}_{N} \sigma_{\mu\nu} \partial^{\nu} \bar{\rho}^{\mu} \psi_{N} \cdot \vec{\tau}_{N}.$$

$$\underbrace{ \begin{array}{c} \text{We fit the } \pi-N \text{ and } \rho-N \text{ coupling} \\ \text{constants to their well-known} \\ \text{physical values: } f_{\pi N}^{2}/4\pi = 0.08 \\ \text{and } g_{\rho N}^{2}/4\pi = 0.55. \end{array}$$

$$f_{\rho N}/g_{\rho N} = 6.0. \\ (\pi N-\text{scattering data}) \end{array}$$

The following nonlinear term is also introduced in order to reproduce the saturation properties of nuclear matter at the mean-field level.

$$U_{\rm NL} = \frac{1}{3}g_2\bar{\sigma}^3 + \frac{1}{4}g_3\bar{\sigma}^4.$$

Coupling constants and U_N^{SEP}

Relativistic Hartree-Fock calculations with enhanced Fock contribution

Coupling constants, g_{oN} , g_{wN} , g_2 , and g_3 are determined in order to reproduce the saturation properties at the normal nuclear matter density, $\rho_0 = 0.16$ fm⁻³.

E = -0.16 MeV,

- M^{*}_N/M_N = 0.70,
- K₀ = 250 MeV.

Model	RH	RH+pion	RHF	RHF-EFC1	RHF-EFC2	RHF-EFC3
M_L^*/M_N	0.754	0.762	0.733	0.762	0.763	0.762
$U_N^{ m SEP}~({ m MeV})$	-52.7	-51.8	-55.3	-51.8	-51.7	-51.9
J_0 (MeV)	-362	-319	-368	-338	-378	-417
$E_{\rm sym}~({\rm MeV})$	23.5	26.7	46.3	32.5^{*}	32.5^{*}	32.5^{*}
L (MeV)	67.0	73.7	123.6	88.1	105.2	113.5
$K_{\rm sym}~({\rm MeV})$	32.0	21.9	-41.0	11.1	83.8	116.7
$K_{\rm asy}~({\rm MeV})$	-370	-420	-783	-517	-547	-564
$K_{\mathrm{sat},2}~(\mathrm{MeV})$	-273	-326	-601	-398	-388	-375
wo	-	-	1.00	0.75	1.50	2.00
w_{ω}			1.00	0.80	2.12	2.88
We.			1.00	0.25	0.50	0.60
w_{π}	-	1.00	1.00	1.00	1.00	1.00

Numerical results

Nuclear matter properties at the saturation density and its momentum dependence

Nuclear symmetry energy

$$E_{sym}(\rho_{B}) = E_{sym}^{kin}(\rho_{B}) + E_{sym}^{pot,dir}(\rho_{B}) + E_{sym}^{pot,ex}(\rho_{B})$$

$$= \underbrace{\frac{1}{6} \frac{k_{F}^{*}}{E_{F}^{*}} k_{F}^{+} + \underbrace{\frac{1}{2} \frac{g_{\rho N}^{2}}{m_{\rho}^{2}} \rho_{B}}_{+ \frac{1}{8} \rho_{B}} \underbrace{\frac{k_{F}^{*}}{E_{F}^{*}} \left[\delta \Sigma_{F}^{ex,s}(\rho_{B}) \right] - \left[\delta \Sigma_{F}^{ex,0}(\rho_{B}) \right] + \frac{k_{F}^{*}}{E_{F}^{*}} \left[\delta \Sigma_{F}^{ex,v}(\rho_{B}) \right]},$$

with $\rho_B = \rho_n + \rho_p$ and

$$\left[\delta \Sigma_{\mathsf{F}}^{\mathsf{ex},i}(\rho_{\mathsf{B}}) \right] = \left(\frac{\delta}{\delta \rho_{\mathsf{p}}} - \frac{\delta}{\delta \rho_{\mathsf{n}}} \right) \left[\Sigma_{\mathsf{p}}^{\mathsf{ex},i}(\mathsf{k}_{\mathsf{F}_{\mathsf{p}}}) - \Sigma_{\mathsf{n}}^{\mathsf{ex},i}(\mathsf{k}_{\mathsf{F}_{\mathsf{n}}}) \right]_{\rho_{3}=0}, \quad i = s, 0, v$$

Numerical results

Density dependence of nuclear matter properties

- Binding energy for symmetric nuclear and pure neutron matter
- Nuclear symmetry energy

Nuclear binding energy

T. Miyatsu et al. — Nuclear symmetry energy in the RHF approximation —

Fock contribution of symmetry energy

Summary

Using the relativistic Hartree-Fock approximation, we study how the Fock contribution affects nuclear symmetry energy at higher densities as well as at the saturation density.

Saturation density, ρ_0 :

We estimate the strength of nuclear symmetry energy.

$$E_{sym}(\rho_0) = E_{sym}^{kin}(\rho_0) + E_{sym}^{pot,dir}(\rho_0) + E_{sym}^{pot,eir}(\rho_0),$$

i2.5 MeV ~ 16.1 MeV, 7.2 MeV, (9.2 MeV)

Higher densities:

- Fock contribution increases nuclear symmetry energy.
- Time (0) component of E^{pot,ex}_{sym}(ρ_B) becomes dominant as the density increases.
- We have to consider the space (v) component as well as scalar (s) and time (0) components self-consistently.

Thank You for Your Attention.

This work was supported by JSPS KAKENHI Grant Number JP17K14298.

√ < <
>
√

15/15

Lorentz covariant decomposition of ϵ and E_{sym}

Energy density for nuclear matter:

$$\begin{split} \epsilon &= \epsilon_{\text{nucl}} + \epsilon_{\text{NL}} \\ &= \sum_{N=n,p} \frac{1}{\pi^2} \int_0^{k_{\overline{F}_N}} d\mathbf{k} \, \mathbf{k}^2 \left[e_N^{\text{kin}}(\mathbf{k}) + e_N^{\text{pot}}(\mathbf{k}) \right] - \frac{1}{2} \left(\frac{1}{3} g_2 \bar{\sigma}^3 + \frac{1}{2} \bar{\sigma}^4 \right) \,, \end{split}$$

with

$$e_{N}^{kin}(k) = E_{N}^{*}(k), \quad e_{N}^{pot}(k) = -\frac{1}{2} \left[\frac{\Sigma_{N}^{s}(k)M_{N}^{*}(k)}{E_{N}^{*}(k)} + \Sigma_{N}^{0}(k) + \frac{\Sigma_{N}^{v}(k)K_{N}^{*}(k)}{E_{N}^{*}(k)} \right]$$

Nuclear symmetry energy: $\rho_B = \rho_n + \rho_p$ and $\rho_3 = \rho_p - \rho_n$.

$$\begin{split} \mathsf{E}_{\mathsf{sym}}(\rho_{\mathsf{B}}) &= \frac{1}{2} \rho_{\mathsf{B}} \left[\frac{\delta^{2} \mathsf{E}(\rho_{\mathsf{B}}, \rho_{3})}{\delta \rho_{3}^{2}} \right]_{\rho_{3}=0, \rho_{\mathsf{B}}: \mathsf{fixed}} = \mathsf{E}_{\mathsf{sym}}^{\mathsf{kin}}(\rho_{\mathsf{B}}) + \mathsf{E}_{\mathsf{sym}}^{\mathsf{pot}, \mathsf{dir}}(\rho_{\mathsf{B}}) + \mathsf{E}_{\mathsf{sym}}^{\mathsf{pot}, \mathsf{ex}}(\rho_{\mathsf{B}}) \\ &= \frac{1}{6} \frac{\mathsf{k}_{\mathsf{F}}^{*}}{\mathsf{E}_{\mathsf{F}}^{*}} \mathsf{k}_{\mathsf{F}} + \frac{1}{2} \frac{g_{\mathsf{pN}}^{2}}{\mathsf{m}_{\mathsf{p}}^{2}} \rho_{\mathsf{B}} + \frac{1}{8} \rho_{\mathsf{B}} \left(\frac{\mathsf{M}_{\mathsf{F}}^{*}}{\mathsf{E}_{\mathsf{F}}^{*}} \left[\delta \Sigma_{\mathsf{F}}^{\mathsf{ex},\mathsf{S}}(\rho_{\mathsf{B}}) \right] - \left[\delta \Sigma_{\mathsf{F}}^{\mathsf{ex},\mathsf{O}}(\rho_{\mathsf{B}}) \right] + \frac{\mathsf{k}_{\mathsf{F}}^{*}}{\mathsf{E}_{\mathsf{F}}^{*}} \left[\delta \Sigma_{\mathsf{F}}^{\mathsf{ex},\mathsf{V}}(\rho_{\mathsf{B}}) \right] \right) \end{split}$$

15/15

with

$$\left[\partial \Sigma_{F}^{ex,i}(\rho_{B}) \right] = \left(\frac{\partial}{\partial \rho_{p}} - \frac{\partial}{\partial \rho_{n}} \right) \left[\Sigma_{p}^{ex,i}(k_{F_{p}}) - \Sigma_{n}^{ex,i}(k_{F_{n}}) \right]_{\rho_{3}=0}, \quad i = s, 0, v.$$

			RHF		RHF-EFC1		
		Σ_N^s	Σ^0_N	Σ_N^v	Σ_N^s	Σ_N^0	Σ^v_N
Direct	σ	-156	0	0	-247	0	0
	ω	0	-183	0	0	-185	0
Exchange	σ	14	-15	$^{-1}$	15	-15	-1
	ω	-62	-33	$^{-1}$	-41	-21	$^{-1}$
	π	-4	4	-3	-4	4	-3
	ρ	-73	15	14	-5	1	1
		(-14, -63, 4)	(-7, 22, 0)	(0, -2, 16)	(-1, -4, 0)	(0, 1, 0)	(0, 0, 1)
Total		-282	-212	9	-282	-216	-3
		RHF-EFC2			RHF-EFC3		
		Σ_N^s	Σ_N^0	Σ_N^v	Σ_N^s	Σ_N^0	Σ^v_N
Direct	σ	-133	0	0	-83	0	0
	ω	0	-104	0	0	-74	0
Exchange	σ	34	-36	-1	41	-43	$^{-2}$
	ω	-160	-84	-3	-208	-109	-3
	π	-4	4	$^{-3}$	-4	4	-3
	ρ	-18	4	3	-26	5	5
		(-3, -16, 1)	(-2, 6, 0)	(0, 0, 4)	(-5, -23, 1)	(-3, 8, 0)	(0,-1,6)
Total		-282	-216	-4	-282	-216	-3

T. Miyatsu et al. — Nuclear symmetry energy in the RHF approximation —

Outline Introduction Theoretical framework Numerical results Summary

Nucleon self-energy at ρ_0

15/15

Matter properties

Model	$\mathbf{R}\mathbf{H}$	RH+pion	RHF	RHF-EFC1	RHF-EFC2	RHF-EFC3
M_L^*/M_N	0.754	0.762	0.733	0.762	0.763	0.762
$U_N^{\rm SEP}~({\rm MeV})$	-52.7	-51.8	-55.3	-51.8	-51.7	-51.9
$J_0 ({\rm MeV})$	-362	-319	-368	-338	-378	-417
$E_{\rm sym}~({\rm MeV})$	23.5	26.7	46.3	32.5^{*}	32.5^{*}	32.5^{*}
$L \ ({\rm MeV})$	67.0	73.7	123.6	88.1	105.2	113.5
$K_{\rm sym}~({\rm MeV})$	32.0	21.9	-41.0	11.1	83.8	116.7
$K_{\rm asy}~({\rm MeV})$	-370	-420	-783	-517	-547	-564
$K_{\mathrm{sat},2} \ (\mathrm{MeV})$	-273	-326	-601	-398	-388	-375
w _σ	_	_	1.00	0.75	1.50	2.00
w_{ω}	_	_	1.00	0.80	2.12	2.88
$w_{ ho}$	_	_	1.00	0.25	0.50	0.60
w_{π}	_	1.00	1.00	1.00	1.00	1.00

Slope parameter

Pressure: SNM

Pressure: PNM

Nucleon effective mass

