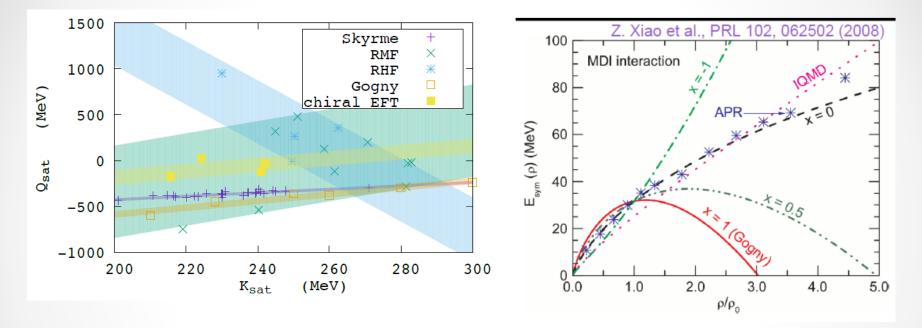

EoS constraints from a metamodelling approach

J. Margueron, F. Gulminelli and R.Casali, ArXiV/nucl-th:1708.06894. ArXiV/nucl-th:1708.06895.


EoS and empirical constraints

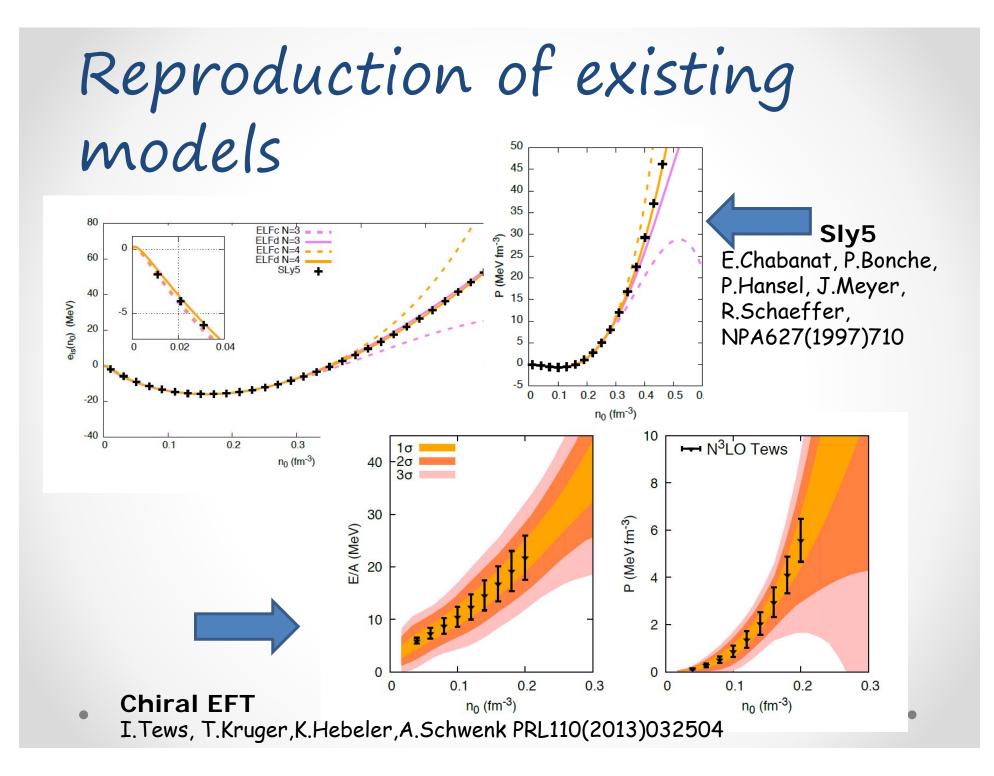
- EoS ⇔ set of empirical parameters P_k = ∂^ke/∂ρ^k ex: E_{sym} ={J,L,K_{sym},Q_{sym} ,Z_{sym}...}
- DFT models corresponding to different EoS are compared to exp.data
- $P_k \pm \Delta P_k$ determined fitting the model to the data
- Correlations among P_k are typically observed

M.Fortin et al, PRC 94,035804

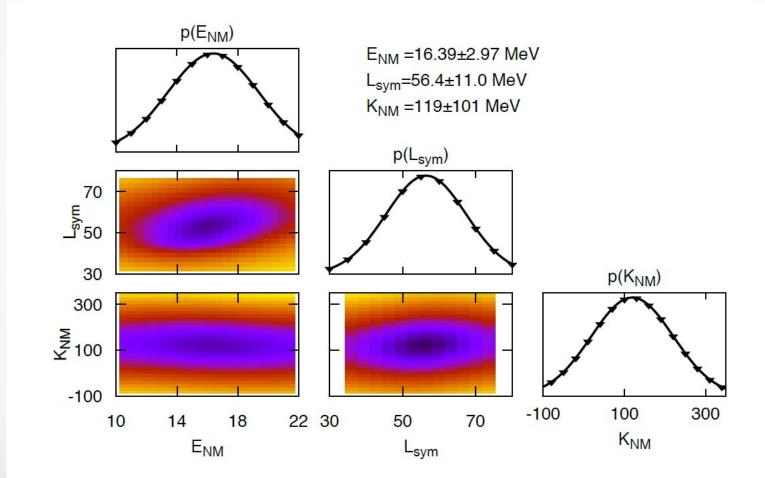
Problem: model dependence

- DFT models assume a specific functional dependence: they have less parameters than the empirical set P_k
 - => emp.parameters are a-priori correlated
 - \Rightarrow not all possible density dependences are explored
 - ⇒ results are model dependent and extrapolations to high density not reliable

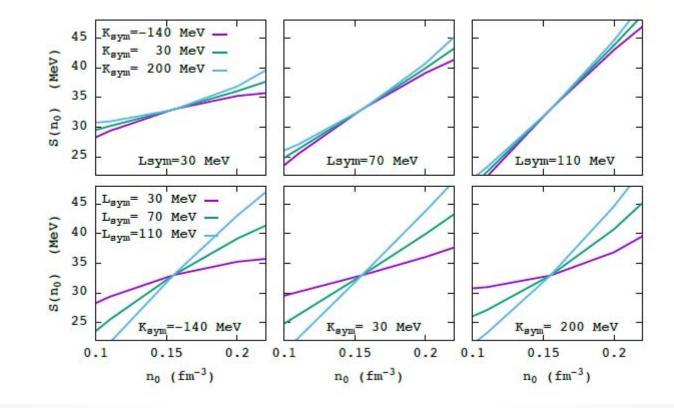
A meta-modelling approach


 An empirical functional that can reproduce most existing models and continuously interpolate among them

Taylor expansion around n_0 $e_{NM}(n,\delta) = \sum_k \frac{1}{k!} \left(\boldsymbol{c_k^{IS}} + \boldsymbol{c_k^{IV}} \delta^2 \right) \left(\frac{n - n_0}{3n_0} \right)^k$


$$\begin{cases} n = n_p + n_n \\ \delta = (n_p - n_n)/n \end{cases}$$

- + boundary conditions $n = 0 \& n \to \infty$
- + explicit expression of the kinetic term (high order δ terms, effective mass)

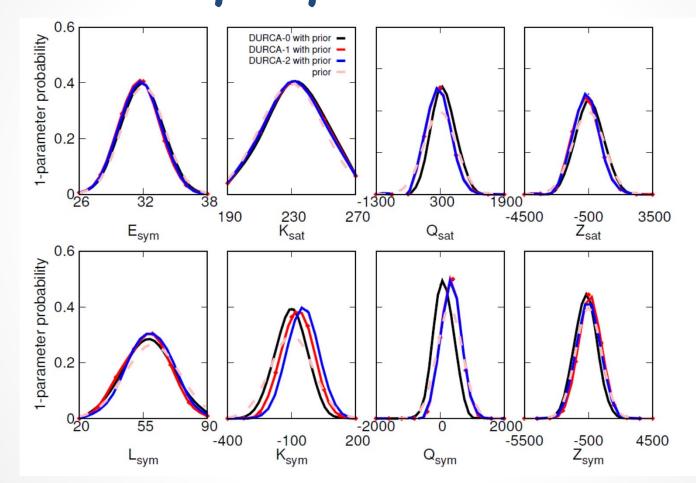

=> one-to-one correspondence between c_k and emp.parameters P_k

Reproduction of existing models

Flexibility: symmetry energy

Varying P_k within their uncertainties: ~25 millions models

P_{α}	E_{sym}	Lsym	Ksat	Ksym	Qsat	Qsym	Zsat	Zsym
	MeV	MeV	MeV	MeV	MeV	MeV	MeV	MeV
$P_{\alpha,1}$	32	60	230	-100	300	0	-500	-500
$P_{\alpha,2}$	2	15	20	100	400	400	1000	1000
Min	26	20	190	-400	-1300	-2000	-4500	-5500
Max	38	90	270	200	1900	2000	3500	4500
step	2	10	20	75	400	400	1000	1000
N	7	8	5	9	9	11	9	11


Present estimations of P_k and their uncertainty: a compilation

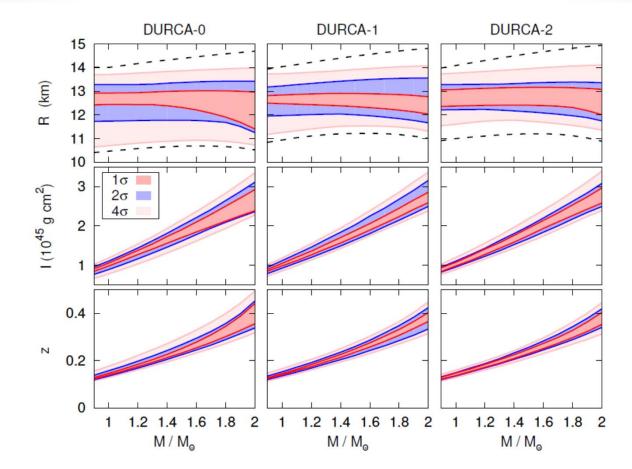
Model		E _{sat} MeV	E _{sym} MeV	n_{sat} fm ⁻³	L _{sym} MeV	K _{sat} MeV	K _{sym} MeV	Q _{sat} MeV	Q _{sym} MeV	Z _{sat} MeV	Z _{sym} MeV	m_{sat}^*/m	$\Delta m_{sat}^*/m$
(N_{α})	der. order	0	0	1	1	2	2	3	3	4	4	-	-
		Phenomenological approaches											
Skyrme	Average	-15.88	30.25	0.1595	47.8	234	-130	-357	378	1500	-2219	0.73	0.08
(16)	σ	0.15	1.70	0.0011	16.8	10	66	22	110	169	617	0.10	0.24
Skyrme	Average	-15.87	30.82	0.1596	49.6	237	-132	-349	370	1448	-2175	0.77	0.127
(35)	σ	0.18	1.54	0.0039	21.6	27	89	89	188	510	1069	0.14	0.310
RMF	Average	-16.24	35.11	0.1494	90.2	268	-5	-2	271	5058	-3672	0.67	-0.09
(11)	σ	0.06	2.63	0.0025	29.6	34	88	393	357	2294	1582	0.02	0.03
RHF	Average	-15.97	33.97	0.1540	90.0	248	128	389	523	5269	-9956	0.74	-0.03
(4)	σ	0.08	1.37	0.0035	11.1	12	51	350	237	838	4156	0.03	0.01
	Ab-initio approaches												
APR	Average	-16.0	33.12	0.16	50.0	270	-199	-665	923	337	-2053	1.0	0.0
(1)	σ	_†	0.30	_†	1.3	2	13	30	67	94	125	_†	_†
χ -EFT	Average	-15.16	32.01	0.171	48.1	214	-172	-139	-164	1306	-2317	-	-
Drischler 2016	σ_{tot}	1.24	2.09	0.016	3.6	22	40	104	234	214	379	-	-
(7)	Min	-16.92	28.53	0.140	43.9	182	-224	-310	-640	901	-2961	-	-
	Max	-13.23	34.57	0.190	53.5	242	-108	24	96	1537	-1750	-	-

Filtering the models: constraints from neutron star physics

- Causality: $0 < v_s < c$
- NS stability: $\nabla p > 0$ for $n > n_0$ in β -equilibrium
- $E_{sym} > 0$
- M_{max}>2M_o
- Limit on DURCA:
 - No DURCA up to $2M_{o}$ DURCA0
 - o DURCA only for $M>1.8M_{o} DURCA1$
 - DURCA only for $M>1.6M_{o}$ DURCA2

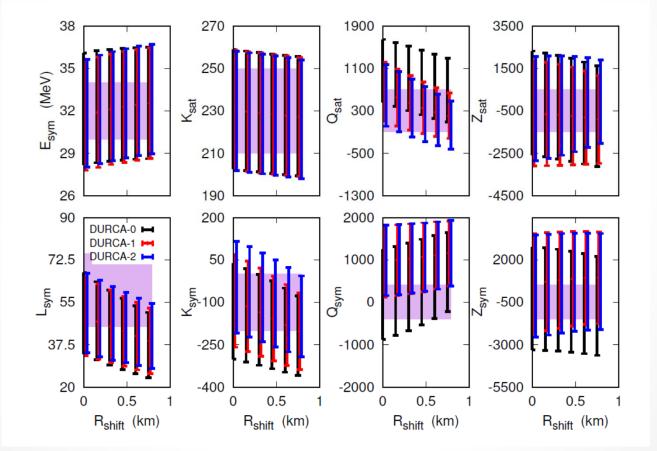
Posterior distribution of emp. parameters

=> Almost no constraint from NS!


Correlation matrix

DUDCA O

	DURCA-0										
Z _{sym}	0.0	-0.1	-0.1	-0.0	-0.0	-0.1	-0.3	1.0			
Q _{sym}	-0.0	-0.1	-0.1	-0.0	-0.2	-0.5	1.0	-0.3			
K _{sym}	-0.0	-0.0	0.1	-0.1	-0.3	1.0	-0.5	-0.1			
L _{sym}	0.0	0.0	0.0	-0.0	1.0	-0.3	-0.2	-0.0			
E _{sym}	0.0	0.0	0.0	1.0	-0.0	-0.1	-0.0	-0.0			
Z _{sat}	-0.0	-0.3	1.0	0.0	0.0	0.1	-0.1	-0.1			
Q _{sat}	-0.1	1.0	-0.3	0.0	0.0	-0.0	-0.1	-0.1			
K _{sat}	1.0	-0.1	-0.0	0.0	0.0	-0.0	-0.0	0.0			
	K _{sat}	Q _{sat}	Z _{sat}	E _{sym}	L _{sym}	K _{sym}	Q _{sym}	Z _{sym}			


=> Almost no correlation among empirical parameters!

Predictions on astro observables

= 11,5<R<13,5 at 2 σ independent of the mass!

Inversion problem

=> A shift in the R(M) observation would considerably improve our knowledge of Lsym and Ksym!

Conclusions

- Meta-modelling empirical EoS able to reproduce the different nuclear models and interpolate between them
- Bayesian determination of parameters with flat or gaussian prior
- Third order derivatives still largely unconstrained
- ALMOST NO CORRELATION AMONG EMP.PARAMETERS
- Quantitative predictions on NS radii
- Many more results in nucl-th:1708.06894. &1708.06895
- Constraints from mass and radii in Debarati's talk!