7th International Symposium on Nuclear Symmetry Energy (NuSYM2017) GANIL, Caen, France, September 4-7, 2017

Status of RAON and LAMPS in Korea

Byungsik Hong (Korea University)

Location of RAON Complex

Site Plan

Supply/Test/Office Bldg

IF Target

Preserved Forest Area

Post.

SRF Facility

. .

Exp. Halls

Drive

SC Linac Accelerator.

Control

Exp. Halls

952,066m²

Basic design was finished in Dec. 2015.
 A construction company was selected in Sept. 2016.

September 4-7, 2017

Site Preparation

Construction and civil engineering for RAON has begun.
 The ground breaking for accelerators and experimental buildings was done on Feb. 13th this year.

Layout of RAON

Layout of RAON

Expected RIBs at RAON

RAON aims to provide an access to unexplored regions of nuclear chart.

Accelerator Systems

September 4-7, 2017

Prototypes of Accelerator Components

Experimental Systems

September 4-7, 2017

Prototypes of Experimental Systems

Major Milestones

IAMPS: large-Acceptace MultiPurpose Spectrometer

Location of LAMPS

September 4-7, 2017

Location of LAMPS

September 4-7, 2017

Time Projection Chamber

Prototype TPC: Design

Prototype TPC: Components

[Readout Pads] Tested pads with the two different dimensions $3 \times 10 \text{ mm}^2$: 357 Ch./Oct. $4 \times 15 \text{ mm}^2$: 175 Ch./Oct. Multi-layer PCB board

[GEM Foil] Trapezoidal shape Thickness: 75 μ m Area: 166 × 118 mm² Triple layers for each plane

[Field Cage]

35 μ m thick and 2 mm wide Cu strips 500 μ m gap between adjacent strips Mirror strips on the back 1 M Ω resistors with 0.1% var. TPC body: G10 + Aramid honeycomb

September 4-7, 2017

Prototype TPC: Assembly

Inner Field Cage installed

Outer Field Cage installed

Prototype TPC assembled

September 4-7, 2017

Prototype TPC: Test at ELPH

ELPH: Research Center for Electron Photon Science at Tohoku University, Japan

 Dates: November 1-2, 2016
 Beams: e⁺ beams at 500 MeV
 Gas: Ar(90%)+CH₄(10%) (P10) Ar(90%)+CO₂(10%) (ArCO₂)
 Purpose: To study the detailed characteristics, such as v_{drift}, diffusion and σ_x, of LAMPS TPC

Prototype TPC: Event Displays

Prototype TPC: Drift Velocity

Maximum distance: 512 timing bins \times 0.04 μ s/bin \times 5 cm/ μ s \cong 100 cm

Tested P20 with cosmic muons: $v_{drift} > 6 \text{ cm}/\mu \text{s}$ that will be suitable for LAMPS TPC if read out from only one endcap side.

Prototype TPC: Diffusion

Prototype TPC: Position Resolution

September 4-7, 2017

Neutron Detector Array

- Construction of the real-size prototype detectors and test of their performances using
 - Radiation-source test: ⁶⁰Co and ²⁵²Cf
 - Neutron-beam test at RCNP, Japan

NDA: Results from Source Test

NDA: Beam Test at RCNP

- E479 approved in B-PAC in March 2016
- Date: May 29, 2016 (Visited RCNP for May 22 June 2)
 - Beam specifications
 - Protons on Li production target (p+⁷Li \rightarrow n + ⁷Be)
 - Neutron energies: 65 and 392 MeV in N0 beamline
 - 10 nA flux \times 1/9 chopping
 - Background neutron above 3MeV is less than1% [NIMA629, 43 (2011)]

NDA: RCNP-E479

Distance from target to the detector: 15 m
Gap between stations: 60 cm
Dim. of each S1 detector: 10 × 10 × 100 cm³
Dim. of each S2 detector: 10 × 10 × 200 cm³
Beam size at S1: 25 × 30 cm²

September 4-7, 2017

NDA: Energy Resolution for Neutrons

NDA: Position Resolution for Neutrons & Cosmics

Preliminary Hit position difference between D1 and D2 for neutrons: $\Delta x_{S1} \equiv x_{D1} - x_{D2}$ for 10 MeV threshold and $\delta t < 3$ ns Relative position resolution for neutrons for one bar: $\sigma(\Delta x_{-})$

$$\sigma_n = \frac{\sigma(\Delta x_{S1})}{\sqrt{2}} = 3.1 \text{ cm}$$

• Position difference between the projected hit position and the hit position for D3 for cosmic muons: $\Delta x_{S2} \equiv x_{D3,proj} - x_{D3,hit}$

Relative position resolution for cosmic muons for one bar:

$$\sigma_{\mu} = \frac{\sigma(\Delta x_{S2})}{1.87} = 3.1 \text{ cm}$$

Summary

- Rare Isotope Science Project (RISP) at IBS, Korea is moving forward.
- The construction and civil engineering for RAON has begun: The ground breaking for accelerators and experimental buildings was done on Feb. 13th this year.
- LAMPS is a dedicated spectrometer for nuclear symmetry energy at RAON.
- Performance tests of the prototype TPC and the neutron-detector-array modules with accelerator beams were done, and we are analyzing the data.