Light clusters and light nuclei in collision dynamics

Akira Ono

Department of Physics, Tohoku University

7th International Symposium on Nuclear Symmetry Energy, September 4–7, 2017, GANIL, Caen, France

Clustering phenomena in excited states of nuclear systems

 $E^* \sim 80 A$ MeV Gas of clusters at higher energies

Kanada-En'yo, Kimura, Ono, Prog. Theor. Exp. Phys. 2012 01A202 (2012)

Importance of clusters in heavy-ion collisions

Collis	ions of two	nuclei (e.g.,)	(e + Sn at 50 Me	$PV/nucleon, b \approx 0)$	• • •
	$\overrightarrow{\bullet}$	- ●	→ ?	$ \rightarrow \overset{\circ}{\overset{\circ}} \overset{\circ}{\overset$	
Partitioning of protons					-
		Xe+Sn	Au + Au	NP 10 **	* 32 A MeV * 39 A MeV
		50 MeV/u	250 MeV/u	1	 45 A MeV 50 A MeV
	р	≈10%	21%	10 ⁻¹	****
	α	≈20%	20%	10 -2	
	d, t, ³ He	≈10%	40%	10 ⁻³	
	A > 4	≈60%	18%	10 -4	
	INDRA data, Hudan et al., PRC67 (2003) 064613.			0 10 20	• • • • • • • • • • • • • • • • • • •

FOPI data, Reisdorf et al., NPA 848 (2010) 366.

Light-cluster correlations are important in late times, at least.

Akira Ono (Tohoku University)

Light clusters and light nuclei in collision dynamics

z

Transport models \approx Nucleons move almost independently in the mean field.

Description by $f_n(\mathbf{r}, \mathbf{p})$ and $f_p(\mathbf{r}, \mathbf{p})$, ignoring correlations.

Probability to find a cluster in a snapshot: $\begin{aligned} |\langle \Psi_d | \psi_n \psi_p \rangle|^2 &= \iiint F_d(\mathbf{r}_1, \mathbf{p}_1, \mathbf{r}_2, \mathbf{p}_2) f_n(\mathbf{r}_1, \mathbf{p}_1) f_p(\mathbf{r}_2, \mathbf{p}_2) \frac{d\mathbf{r}_1 d\mathbf{p}_1 d\mathbf{r}_2 d\mathbf{p}_2}{(2\pi\hbar)^6} \\ \Psi_d(\mathbf{r}_1, \mathbf{r}_2) &= \psi_d^{\text{int}} \Big(\mathbf{r}_1 - \mathbf{r}_2 \Big) \psi_d^{\text{cm}} \Big(\frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2) \Big) \\ F_d(\mathbf{r}_1, \mathbf{p}_1, \mathbf{r}_2, \mathbf{p}_2) &= f_d^{\text{int}} \Big(\mathbf{r}_1 - \mathbf{r}_2, \ \frac{1}{2} (\mathbf{p}_1 - \mathbf{p}_2) \Big) f_d^{\text{cm}} \Big(\frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2), \ \mathbf{p}_1 + \mathbf{p}_2 \Big) \end{aligned}$

Unfortunately, $|\langle \Psi_d | \psi_n \psi_p \rangle|^2$ is time dependent.

• Coalescence prescription: Assume that the transport calculation is correct until "freeze out", and then clusters are suddenly emitted with these probabilities.

e.g. L.W. Chen, et al., NPA 729 (2003) 809.

- More dynamical approaches with cluster correlations:
 - Should predict when each cluster is formed.
 - Should calculate the fate of formed clusters.

Transport models \approx Nucleons move almost independently in the mean field.

Description by $f_n(\mathbf{r}, \mathbf{p})$ and $f_p(\mathbf{r}, \mathbf{p})$, ignoring correlations.

Probability to find a cluster in a snapshot:
$$\begin{split} |\langle \Psi_d | \psi_n \psi_p \rangle|^2 &= \iiint F_d(\mathbf{r}_1, \mathbf{p}_1, \mathbf{r}_2, \mathbf{p}_2) f_n(\mathbf{r}_1, \mathbf{p}_1) f_p(\mathbf{r}_2, \mathbf{p}_2) \frac{d\mathbf{r}_1 d\mathbf{p}_1 d\mathbf{r}_2 d\mathbf{p}_2}{(2\pi\hbar)^6} \\ \Psi_d(\mathbf{r}_1, \mathbf{r}_2) &= \psi_d^{\text{int}} \Big(\mathbf{r}_1 - \mathbf{r}_2 \Big) \psi_d^{\text{cm}} \Big(\frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2) \Big) \\ F_d(\mathbf{r}_1, \mathbf{p}_1, \mathbf{r}_2, \mathbf{p}_2) &= f_d^{\text{int}} \Big(\mathbf{r}_1 - \mathbf{r}_2, \ \frac{1}{2} (\mathbf{p}_1 - \mathbf{p}_2) \Big) f_d^{\text{cm}} \Big(\frac{1}{2} (\mathbf{r}_1 + \mathbf{r}_2), \ \mathbf{p}_1 + \mathbf{p}_2 \Big) \end{split}$$

Unfortunately, $|\langle \Psi_d | \psi_n \psi_p \rangle|^2$ is time dependent.

• Coalescence prescription: Assume that the transport calculation is correct until "freeze out", and then clusters are suddenly emitted with these probabilities.

e.g. L.W. Chen, et al., NPA 729 (2003) 809.

- More dynamical approaches with cluster correlations:
 - Should predict when each cluster is formed.
 - Should calculate the fate of formed clusters.

BUU with clusters

Danielewicz and Bertsch, NPA 533 (1991) 712. Coupled equations for $f_n(\mathbf{r}, \mathbf{p}, t)$, $f_p(\mathbf{r}, \mathbf{p}, t)$, $f_d(\mathbf{r}, \mathbf{p}, t)$, $f_t(\mathbf{r}, \mathbf{p}, t)$, $f_h(\mathbf{r}, \mathbf{p}, t)$ are solved by the test particle method.

$$\begin{split} &\frac{\partial f_n}{\partial t} + \mathbf{v} \cdot \frac{\partial f_n}{\partial \mathbf{r}} - \frac{\partial U_n}{\partial \mathbf{r}} \cdot \frac{\partial f_n}{\partial \mathbf{p}} = I_n^{\mathsf{coll}}[f_n, f_p, f_d, f_t, f_h] \\ &\frac{\partial f_p}{\partial t} + \mathbf{v} \cdot \frac{\partial f_p}{\partial \mathbf{r}} - \frac{\partial U_p}{\partial \mathbf{r}} \cdot \frac{\partial f_p}{\partial \mathbf{p}} = I_p^{\mathsf{coll}}[f_n, f_p, f_d, f_t, f_h] \\ &\frac{\partial f_d}{\partial t} + \mathbf{v} \cdot \frac{\partial f_d}{\partial \mathbf{r}} - \frac{\partial U_d}{\partial \mathbf{r}} \cdot \frac{\partial f_d}{\partial \mathbf{p}} = I_d^{\mathsf{coll}}[f_n, f_p, f_d, f_t, f_h] \\ &\frac{\partial f_t}{\partial t} + \mathbf{v} \cdot \frac{\partial f_t}{\partial \mathbf{r}} - \frac{\partial U_t}{\partial \mathbf{r}} \cdot \frac{\partial f_t}{\partial \mathbf{p}} = I_t^{\mathsf{coll}}[f_n, f_p, f_d, f_t, f_h] \\ &\frac{\partial f_h}{\partial t} + \mathbf{v} \cdot \frac{\partial f_h}{\partial \mathbf{r}} - \frac{\partial U_h}{\partial \mathbf{r}} \cdot \frac{\partial f_h}{\partial \mathbf{p}} = I_t^{\mathsf{coll}}[f_n, f_p, f_d, f_t, f_h] \end{split}$$

Kuhrts et al., PRC63(2001)034605.

Antisymmetrized Molecular Dynamics (very basic version)

 $|\Phi(Z)\rangle = \frac{\det}{ij} \Big[\exp\Big\{-\nu \Big(\mathbf{r}_j - \frac{\mathbf{Z}_i}{\sqrt{\nu}}\Big)^2 \Big\} \chi_{\alpha_i}(j) \Big]$

AMD wave function

$$\mathbf{Z}_i = \sqrt{v} \mathbf{D}_i + \frac{i}{2\hbar\sqrt{v}} \mathbf{K}_i$$

v: Width parameter = (2.5 fm)⁻²

 χ_{α_i} : Spin-isospin states = $p \uparrow, p \downarrow, n \uparrow, n \downarrow$

Equation of motion for the wave packet centroids Z

$$\frac{d}{dt}\mathbf{Z}_i = \{\mathbf{Z}_i, \mathcal{H}\}_{\mathsf{PB}} + (\mathsf{NN \ collisions})$$

$\{\mathbf{Z}_i, \mathcal{H}\}_{PB}$: Motion in the mean field	NN collisions
$\mathcal{H} = \frac{\langle \Phi(Z) H \Phi(Z) \rangle}{\langle \Phi(Z) \Phi(Z) \rangle} + (\text{c.m. correction})$ H: Effective interaction (e.g. Skyrme force)	$W_{i \to f} = \frac{2\pi}{\hbar} \langle \Psi_f V \Psi_i \rangle ^2 \delta(E_f - E_i)$ • $ V ^2$ or σ_{NN} (in medium)
	Pauli blocking

Ono, Horiuchi et al., Prog. Theor. Phys. 87 (1992) 1185.

AMD with usual NN collisions (very basic version)

Partitioning of protons						
(experimental data)						
	Xe + Sn	Au + Au				
	50 MeV/u	250 MeV/u				
р	≈10%	21%				
α	≈20%	20%				
d, t, ³ He	≈10%	40%				
<i>A</i> > 4	≈60%	18%				

INDRA data, Hudan et al., PRC67 (2003) 064613. FOPI data, Reisdorf et al., NPA 848 (2010) 366.

NN collisions without or with cluster correlations

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_f | V | \Psi_i \rangle|^2 \delta(E_f - E_i)$$

3

In the usual way of NN collision, only the two wave packets are changed.

$$\left\{ |\Psi_f\rangle \right\} = \left\{ |\varphi_{k_1}(1)\varphi_{k_2}(2)\Psi(3,4,\ldots)\rangle \right\}$$

(ignoring antisymmetrization for simplicity of presentation.)

Phase space or the density of states for two nucleon system

NN collisions without or with cluster correlations

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | V | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{f} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{f} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E_{i})$$

$$W_{i \to f} = \frac{2\pi}{\hbar} |\langle \Psi_{i} | \Psi_{i} \rangle|^{2} \delta(E_{i} - E$$

_

 $\left\{ |\Psi_f\rangle \right\} \ni |\varphi_{k_1}(1)\psi_d(2,3)\Psi(4,\ldots)\rangle, \ \ldots$

Similar to Danielewicz et al., NPA533 (1991) 712.

$$N_1 \xrightarrow{B_1} \varphi_1' \xrightarrow{\varphi_1'} C_1$$

$$N_2 \xrightarrow{P_2'} \varphi_2 \xrightarrow{\varphi_2'} C_2$$

$$B_2 \xrightarrow{\varphi_2'} \varphi_2'$$

$$\begin{split} \mathbf{p}_{\mathsf{rel}} &= \frac{1}{2} (\mathbf{p}_1 - \mathbf{p}_2) = p_{\mathsf{rel}} \hat{\mathbf{\Omega}} \\ \mathbf{q} &= \mathbf{p}_1 - \mathbf{p}_1^{(0)} = \mathbf{p}_2^{(0)} - \mathbf{p}_2 \\ \varphi_1^{+\mathbf{q}} &= \exp(+i\mathbf{q}\cdot\mathbf{r}_{\mathbf{N}_1})\varphi_1^{(0)} \\ \varphi_2^{-\mathbf{q}} &= \exp(-i\mathbf{q}\cdot\mathbf{r}_{\mathbf{N}_2})\varphi_2^{(0)} \end{split}$$

$N_1 + B_1 + N_2 + B_2 \rightarrow C_1 + C_2$

- N₁, N₂ : Colliding nucleons
- B₁, B₂ : Spectator nucleons/clusters
- C₁, C₂ : N, (2N), (3N), (4N) (up to α cluster)

Transition probability

$$W(\text{NBNB} \rightarrow \text{CC}) = \frac{2\pi}{\hbar} |\langle \text{CC} | V | \text{NBNB} \rangle|^2 \delta(E_f - E_i)$$

$$vd\sigma \propto |\langle \varphi_1'|\varphi_1^{+\mathbf{q}}\rangle|^2 |\langle \varphi_2'|\varphi_2^{-\mathbf{q}}\rangle|^2 |M|^2 \delta(E_f - E_i) p_{\mathsf{rel}}^2 dp_{\mathsf{rel}} d\Omega$$

 $|M|^2 = |\langle NN|V|NN \rangle|^2$: Matrix elements of NN scattering $\Leftarrow (d\sigma/d\Omega)_{NN}$ in medium (or in free space)

NN collisions with cluster correlations (more explanations)

For each NN collision, cluster formation is considered.

$$\begin{split} & \mathsf{N}_1 + \mathsf{B}_1 + \mathsf{N}_2 + \mathsf{B}_2 \rightarrow \mathsf{C}_1 + \mathsf{C}_2 \\ & W_{i \rightarrow f} = \frac{2\pi}{\hbar} |\langle \mathsf{CC} | V_{NN} | \mathsf{NBNB} \rangle|^2 \delta(E_f - E_i) \end{split}$$

Ono, J. Phys. Conf. Ser. 420 (2013) 012103 Ikeno, Ono et al., PRC 93 (2016) 044612

- We always have a Slater determinant of nucleon wave packets. A cluster in the final states is represented by placing wave packets at the same phase space point.
- Consequently the processes such as $d + X \rightarrow n + p + X'$ and $d + X \rightarrow d + X'$ are automatically taken into account.

- No parameters have been introduced to adjust individual reactions.
- There is an option to suppress clusters depending on the medium.
- There are many possibilities to from clusters in the final states.
 Non-orthogonality of the final states should be carefully handled.

Construction of Final States

Clusters (in the final states) are assumed to have $(0s)^N$ configuration.

Final states are not orthogonal: $N_{ij} \equiv \langle \Phi'_i | \Phi'_i \rangle \neq \delta_{ij}$

The probability of cluster formation with one of B's:

$$\hat{P} = \sum_{ij} |\Phi'_i\rangle N_{ij}^{-1} \langle \Phi'_j |, \qquad P = \langle \Phi^{\mathbf{q}} | \hat{P} | \Phi^{\mathbf{q}} \rangle \qquad \neq \sum_i |\langle \Phi'_i | \Phi^{\mathbf{q}} \rangle|^2$$

 $\begin{cases} P \Rightarrow \text{Choose one of the candidates and make a cluster.} \\ 1 - P \Rightarrow \text{Don't make a cluster (with any n1).} \end{cases}$

Akira Ono (Tohoku University)

Correlations to bind several clusters

Clusters may form a loosely bound state.

e.g., ⁷Li = $\alpha + t - 2.5$ MeV Need more probability of $|\alpha + t\rangle \rightarrow |^{7}$ Li \rangle

- Step 1 Clusters (and nucleons) C_i and C_j are *linked*,
 - if C_i is one of the 4 clusters closest to C_j, and (i ↔ j),
 - and if the distance is 1 fm < $|\mathbf{R}_{ij}| < 5$ fm,
 - and if they are slowly moving away, $\mathbf{P}_{ij}^2/2\mu_{ij} < 8 \text{ MeV}$ and $\mathbf{R}_{ij} \cdot \mathbf{P}_{ij} > 0$.
- **Step 2** Linked clusters (CC) are identified. Following steps are taken only for CC with mass number $6 \le A \le 9$.
- Step 3 Transition of the internal state of CC by eliminating the internal momentum

 $\mathbf{P}_i \rightarrow \mathbf{0}$ for $i \in \mathbf{CC}$ in the c.m. of CC

Step 4 Energy conservation.

Correlations to bind several clusters

Clusters may form a loosely bound state.

e.g., ⁷Li = $\alpha + t - 2.5$ MeV Need more probability of $|\alpha + t\rangle \rightarrow |^{7}$ Li \rangle

- Step 1 Clusters (and nucleons) C_i and C_j are *linked*,
 - if C_i is one of the 4 clusters closest to C_j, and (i ↔ j),
 - and if the distance is 1 fm < $|\mathbf{R}_{ij}| < 5$ fm,
 - and if they are slowly moving away, $\mathbf{P}_{ij}^2/2\mu_{ij} < 8 \text{ MeV}$ and $\mathbf{R}_{ij} \cdot \mathbf{P}_{ij} > 0$.
- Step 2 Linked clusters (CC) are identified. Following steps are taken only for CC with mass number $6 \le A \le 9$.
- Step 3 Transition of the internal state of CC by eliminating the internal momentum

 $\mathbf{P}_i \rightarrow \mathbf{0}$ for $i \in \mathbf{CC}$ in the c.m. of CC

Step 4 Energy conservation.

Results for multifragmentation in central collisions

Hudan et al., PRC 67 (2003) 064613. Reisdorf et al., NPA 848 (2010) 366. Hagel et al., PRC 50 (1994) 2017. Data:

Akira Ono (Tohoku University)

Each wave packet has a momentum width. E.g., it is an important part of the Fermi motion.

The momentum fluctuation Δp is given to a wave packet when it is '**emitted**', following Ono and Horiuchi, PRC53 (1996) 845 [a simple version of wp splitting].

- For a formed cluster, the momentum fluctuation is given to its center-of-mass motion.
- Total momentum and energy conservation.
- A particle is regarded as 'emitted' when there is no other particles around it in phase space within the radius (Δr, Δv) = (3.5 fm, 0.25c).
- Consistency with the method of the zero-point energy correction.

A quantity to represent stopping

$$R_E = \frac{\sum (E_x + E_y)}{2\sum E_z},$$

 \sum for all charged products ($Z \ge 1$)

Stopping should depend on

- Inmedium NN cross sections
- Treatment of Pauli blocking
- Effective interaction

How to select events

Collisions at ~ 300 MeV/nucleon

- High density (~ $2\rho_0$)
- Pion produciton

¹³²Sn + ¹²⁴Sn, E/A = 300 MeV, $b \sim 0$, AMD calculation Neutron rich system (N = 156, Z = 100)

Simple picture

Symmetry Energy
$$S(\rho) \iff n/p \iff \Delta^{-}/\Delta^{0}/\Delta^{+}/\Delta^{++} \iff \pi^{-}/\pi^{+}$$

Is the simple expectation $(n/p)^2 \approx \pi^-/\pi^+$ valid in HIC?

Akira Ono (Tohoku University)

Collisions at ~ 300 MeV/nucleon

- High density (~ $2\rho_0$)
- Pion produciton

¹³²Sn + ¹²⁴Sn, E/A = 300 MeV, $b \sim 0$, AMD calculation Neutron rich system (N = 156, Z = 100)

More complicated picture

Equation of State NN cross sections Cluster correlations

$$\Rightarrow n/p \stackrel{NN \leftrightarrow N\Delta}{\longleftrightarrow} \Delta^{-}/\Delta^{0}/\Delta^{+}/\Delta^{++} \stackrel{\Delta \leftrightarrow N\pi}{\longleftrightarrow} \pi^{-}/\pi^{+}$$
other observables

Is the simple expectation $(n/p)^2 \approx \pi^-/\pi^+$ valid in HIC?

Ikeno, Ono, Nara, Ohnishi, PRC 93 (2016) 044612. (updated)

Different n/p dynamics \leftarrow different $E_{sym}(\rho)$ and cluster correlations

Four AMD+JAM calculations and a JAM calculation

- Solid lines: with clusters; Soft (L = 46 MeV) and Stiff (L = 108 MeV)
- Dashed lines: without clusters; **Soft** (*L* = 46 MeV) and Stiff (*L* = 108 MeV)
- Dot-dashed line: JAM (without mean field)

Akira Ono (Tohoku University)

Ikeno, Ono, Nara, Ohnishi, PRC 93 (2016) 044612. (updated)

Different n/p dynamics \leftarrow different $E_{sym}(\rho)$ and cluster correlations

Four AMD+JAM calculations and a JAM calculation

- Solid lines: with clusters; Soft (L = 46 MeV) and Stiff (L = 108 MeV)
- Dashed lines: without clusters; **Soft** (*L* = 46 MeV) and Stiff (*L* = 108 MeV)
- Dot-dashed line: JAM (without mean field)

Akira Ono (Tohoku University)

Ikeno, Ono, Nara, Ohnishi, PRC 93 (2016) 044612. (updated)

Different n/p dynamics \leftarrow different $E_{sym}(\rho)$ and cluster correlations

Four AMD+JAM calculations and a JAM calculation

- Solid lines: with clusters; Soft (L = 46 MeV) and Stiff (L = 108 MeV)
- Dashed lines: without clusters; **Soft** (*L* = 46 MeV) and Stiff (*L* = 108 MeV)
- Dot-dashed line: JAM (without mean field)

Akira Ono (Tohoku University)

Ikeno, Ono, Nara, Ohnishi, PRC 93 (2016) 044612. (updated)

Nucleons $\Rightarrow \Delta$ production

- Δ production sees the nucleons in the high-density and high-momentum region of phase space.
- ∆ production is also affected by the nucleons in the low-momentum region of phase space. ⇒ Ikeno's talk on Wednesday.

• $(N/Z)^2$ in high- ρ and high-p region $\approx (\pi^-/\pi^+)_{\text{like}}$ at t = 20 fm/c \cdots Final π^-/π^+ ~30% reduction of E_{sym} effect

• Effects of clusters: Larger ratios, and weaker dependence on Esym

Pions have to go through the exterior region of the expanding system.

- For stiff symmetry energy,
 - The interior region is less neutron rich. $\pi^-/\pi^+\searrow\searrow$
 - The exterior region is more neutron rich. π^-/π^+ /

N/Z Ratio in ¹³²Sn + ¹²⁴Sn at 300 MeV/u (AMD with clusters)

N/Z Ratio in ¹³²Sn + ¹²⁴Sn at 300 MeV/u (AMD without clusters)

N/Z Ratio at 50 and 300 MeV/u

Central collisions calculated by AMD with clusters

$\mathit{N/Z}$ Ratio at 50 and 300 MeV/u

Summary

- Recent extensions of AMD
 - Light clusters, produced at NN collisions
 - Correlations between light clusters, to produce light nuclei
 - · Momentum fluctuation in Gaussian wave packet
- Fragment size distributions in various collisions can be reproduced reasonably well.
- Cluster correlations (as well as the symmetry energy) influence the dynamics of compression and expansion of the two-component (n&p) system.
- The effects are reflected in some observables, such as the π^-/π^+ ratio and the n/p spectral ratio.

Summary

- Recent extensions of AMD
 - Light clusters, produced at NN collisions
 - Correlations between light clusters, to produce light nuclei
 - · Momentum fluctuation in Gaussian wave packet
- Fragment size distributions in various collisions can be reproduced reasonably well.
- Cluster correlations (as well as the symmetry energy) influence the dynamics of compression and expansion of the two-component (n&p) system.
- The effects are reflected in some observables, such as the π^-/π^+ ratio and the n/p spectral ratio.
- TODO: More consistent description of various reactions and observables, such as the energy dependence of stopping observables and the particle spectra.