

Isospin influence on Fragments production in ⁷⁸Kr + ⁴⁰Ca and ⁸⁶Kr + ⁴⁸Ca collisions at 10 MeV/nucleon

G. Politi for NEWCHIM/ISODEC collaboration

Dipartimento di Fisica e Astronomia Sezione INFN - Catania, Italy

Outlook

- **Physics Case**
- **Experimental Method**
- **Main Results**
- **Reaction Mechanisms**
- **Fragment Kinematical Features and Charge Distributions**
- **Reaction Cross Sections**
- **Comparisons with theoretical models**
- **Conclusions and Perspectives**

Physics Case

Heavy-ion induced reactions with stable and radioactive beams are ideal to explore the nuclei under different stress conditions

Low energy regime E < 15 MeV/A is dominated by Compound Nucleus de-excitations in competition with binary processes (DIC, Quasi-Fission)

Physics Case

Heavy-ion induced reactions with stable and radioactive beams are ideal to explore the nuclei under different stress conditions

Low energy regime E < 15 MeV/A is dominated by Compound Nucleus de-excitations in competition with binary processes (DIC, Quasi-Fission)

The isospin is expected to play a crucial role in the reaction dynamics:

N/Z ratio can influences:

Fragments formation

Reaction mechanisms

Competition among the different decay channels of the CN

ISODEC Experiment

in the LEA/COLLIGA framework

^{78,86}Kr + ^{40,48}Ca -> ^{118,134}Ba

E/A=10 MeV/A

	¹¹⁸ Ba	¹³⁴ Ba
E*(MeV)	215	270
(N/Z)tot	1.11	1.39

- S. Pirrone et al., Journal of Physics: Conf. Series 515 (2014) 012018
- G. Politi et al., JPS Conf. Proc. Vol. 6 (2015) 030082
- B. Gnoffo, Nuovo Cimento 39C (2016) 275

ISODEC Experiment

in the LEA/COLLIGA framework

^{78,86}Kr + ^{40,48}Ca -> ^{118,134}Ba

E/A=10 MeV/A

	¹¹⁸ Ba	¹³⁴ Ba
E*(MeV)	215	270
(N/Z)tot	1.11	1.39

S. Pirrone et al., Journal of Physics: Conf. Series 515 (2014) 012018 G. Politi et al., JPS Conf. Proc. Vol. 6 (2015) 030082 B. Gnoffo, Nuovo Cimento 39C (2016) 275

Comparison with

^{78,82}Kr + ⁴⁰Ca -> ^{118,122}Ba INDRA detector at GANIL

E/A=5.5 MeV/A E* ≈ 100 MeV

G. Ademard et al. PRC 83 (2011) 054619

Composite systems with higher E* -> effects on decay

Larger domain of N/Z, maximum with stable beam

Experimental Method

Key observables: cross sections, multiplicities, angular and energy distributions of different reaction products

Good isotopic resolution, low energy threshold, high angular resolution and acceptance

CHIMERA device operating at INFN-LNS

Experimental Method

Key observables: cross sections, multiplicities, angular and energy distributions of different reaction products

Good isotopic resolution, low energy threshold, high angular resolution and acceptance

CHIMERA device operating at INFN-LNS

First measurement with pulse shape discrimination in Silicon detector

Fundamental in this energy regime

Reaction Mechanisms

Inclusive events: mass distributions at different angles

Different processes (n-poor)

Reaction Mechanisms

Inclusive events: mass distributions at different angles

Different processes (n-poor)

fusion evaporation channel
 A ≈ 100 very forward angles

Reaction Mechanisms

Inclusive events: mass distributions at different angles

Different processes (n-poor)

- fusion evaporation channel
 A ≈ 100 very forward angles
- fusion-fission channel
 A ≈ 40-90 wider theta range

Reaction Mechanisms

Inclusive events: mass distributions at different angles

Different processes (n-poor)

- fusion evaporation channel
 A ≈ 100 very forward angles
- fusion-fission channel
 A ≈ 40-90 wider theta range
- third component
 A ≈ 80 forward angle
 kind of binary mechanism,
 not completely relaxed in mass -> DIC

DIC mechanism typically observed in plot TKE – θ_{cm}

TKE reconstructed from fragment kinematical characteristics

DIC mechanism typically observed in plot TKE – θ_{cm}

TKE reconstructed from fragment kinematical characteristics

DIC mechanism typically observed in plot TKE – θ_{cm}

TKE reconstructed from fragment kinematical characteristics

Value in agreement with a compilation of C. Beck et al. on fission energy release

Analogue results for n-rich system, with DIC even more present

 $\label{eq:main_constraint} M \geq 2 \quad 0.8 \; M_{CN} \leq M_{tot} \leq 1.1 \; M_{CN} \quad 0.6 \leq p_{tot}/p_{beam} \leq 1$ Correlation between sizes of the two biggest fragments

 $\label{eq:main_constraint} M \geq 2 \quad 0.8 \; M_{CN} \leq M_{tot} \leq 1.1 \; M_{CN} \quad 0.6 \leq p_{tot}/p_{beam} \leq 1$ Correlation between sizes of the two biggest fragments

ER production seems to be slightly more pronounced in n-poor

 $\label{eq:main_constraint} M \geq 2 \quad 0.8 \; M_{CN} \leq M_{tot} \leq 1.1 \; M_{CN} \quad 0.6 \leq p_{tot}/p_{beam} \leq 1$ Correlation between fragment mass and parallel velocity

 $M \ge 2 \quad 0.8 \ M_{CN} \le M_{tot} \le 1.1 \ M_{CN} \quad 0.6 \le p_{tot}/p_{beam} \le 1$ Correlation between fragment mass and parallel velocity

ER production seems to be enhanced in the n-poor system

Mostly Binary Decay is presents in both systems

Fragment Kinematical Features and Charge Distributions

Back to Inclusive normalized data

Average velocities in CM frame for fission fragments (n-poor)

Independent from emission angle and decreasing with Z

-> equilibrated process

Good agreement with Viola-Hinde systematic for fission

Regular behavior slightly disregarded for Z>30, maybe due to to the dynamical mechanism contribution

Angular distributions of fragments in CM frame (n-poor)

Main Results

1/sinθ behavior, expected for a production via a long lived system -> fission like mechanism from equilibrated source

Angular distributions of fragments in CM frame (n-poor)

1/sinθ behavior, expected for a production via a long lived system -> fission like mechanism from equilibrated source

Z > 28 stronger contribution at smaller angles, confirming a not fully equilibrated binary mechanism

Integration of $1/sin\theta$ angular distribution gives production cross

sections for each Z

Integration of $1/sin\theta$ angular distribution gives production cross

sections for each Z

Strong even-odd staggering effect -> preference for even value of Z the atomic number, because of the larger binding

Staggering more pronounced for the neutron poor system, in particular for $Z \le 10$

Fragments production globally favored for n-poor

Integration of $1/sin\theta$ angular distribution gives production cross

sections for each Z

Strong even-odd staggering effect -> preference for even value of Z the atomic number, because of the larger binding

Staggering more pronounced for the neutron poor system, in particular for $Z \leq 10$

Fragments production globally favored for n-poor

Charge distribution asymmetric with respect to Z_{CN}/2=28 Possible contamination of DIC for heavier fragments even with 1/sinθ behaviour -> process not fully relaxed in mass

Selection of complete events to get rid of very dissipative binary collisions (TLF not detected)

Cross sections normalized to value for Z = 18

DIC process influence on fragment production starting from Z > 26 - 28

Comparison for n-poor system at 5 MeV/A for Z < 30

Larger cross section at higher energy

Difference decreasing with increasing of Z

Comparison for n-poor system at 5 MeV/A for Z < 30

Larger cross section at higher energy

Difference decreasing with increasing of Z

Lower energy -> favored decay mode is evaporation Higher energy -> fusion-fission channel prevails on, with a stronger production of fragments

Reaction Cross sections

Process cross sections deduced from $\sigma(z)$

- Fusion Evaporation ER: Z > 41/45 subtracting FL for heavy fragments
- Fission Like FL: Z = 3 28/26 -> corrected for DIC
- Reaction: elastic scattering (quarter point recipe)

	σ _{εR} (mb)	σ _{FL} (mb)	σ _{Fus} (mb)	σ _{Reac} (mb)
⁷⁸ Kr+ ⁴⁰ Ca	455±70	850±120	1305±190	2390±250
⁸⁶ Kr+ ⁴⁸ Ca	400±60	530±85	930±145	2520±260

Reaction Cross sections

Process cross sections deduced from $\sigma(z)$

- Fusion Evaporation ER: Z > 41/45 subtracting FL for heavy fragments
- Fission Like FL: Z = 3 28/26 -> corrected for DIC
- Reaction: elastic scattering (quarter point recipe)

	σ _{εR} (mb)	σ _{FL} (mb)	σ _{Fus} (mb)	σ _{Reac} (mb)
⁷⁸ Kr+ ⁴⁰ Ca	455±70	850±120	1305±190	2390±250
⁸⁶ Kr+ ⁴⁸ Ca	400±60	530±85	930±145	2520±260

Fusion Evaporation similar in the two systems

Fission Like more present for n-rich systems

Fusion reaction cross sections ($\sigma_{ER} + \sigma_{FL}$) in good agreement with a recent systematic study of Eudes et al.

Reaction Cross sections

Process cross sections deduced from $\sigma(z)$

- Fusion Evaporation ER: Z > 41/45 subtracting FL for heavy fragments
- Fission Like FL: Z = 3 28/26 -> corrected for DIC
- Reaction: elastic scattering (quarter point recipe)

	σ _{εR} (mb)	σ _{FL} (mb)	σ _{Fus} (mb)	σ _{Reac} (mb)
⁷⁸ Kr+ ⁴⁰ Ca	455±70	850±120	1305±190	2390±250
⁸⁶ Kr+ ⁴⁸ Ca	400±60	530±85	930±145	2520±260

Difference σ_{Reac} - σ_{Fus} probably due to the DIC, more pronounced for the n-rich system

Difference in σ_{FL} between n-rich and n-poor higher than in the low energy case, with only 4n difference rather than 16n

Comparison with Models

Di Nuclear System - JINR Dubna & INP Tashkent Dynamical evolution of the composite system is considered Nucleon exchange drives towards compact configurations: - CN decaying by evaporation or fission - DiNuclear system leading to QF Decay process is then traced

until all fragments become cold

Comparison with Models

Di Nuclear System - JINR Dubna & INP Tashkent

Dynamical evolution of the composite system is considered

Nucleon exchange drives towards compact configurations:

- CN decaying by evaporation or fission
- DiNuclear system leading to QF

Decay process is then traced until all fragments become cold

S.A. Kalandarov et al. PRC 93 (2016) 024613

Staggering is reproduced

Cross sections are slightly under estimated

Comparison with Models

Di Nuclear System - JINR Dubna & INP Tashkent

Dynamical evolution of the composite system is considered

Nucleon exchange drives towards compact configurations:

- CN decaying by evaporation of fission
- DiNuclear system leading to QF

Most of the fragments comes from the quasi-fission process, strongly affected by the J_{max} Underestimation indicates fusion

and quasi-fission events also at b larger than in the model

GEMINI++

Statistical model code considering fusion, CN formation, evaporation, fission and sequential binary- decay

GEMINI++

Statistical model code considering fusion, CN formation, evaporation, fission and sequential binary- decay

 J_{max} and level density parameter used for DNS

Lower fragments yield, probably due to absence in the model of quasi fission incomplete fusion pre-equilibrium

Conclusions and Perspectives

ISODEC Experiment ⁸⁶Kr + ^{40,48}Ca -> ^{118,134}Ba E/A=10 MeV/A CHIMERA detector at LNS-INFN Catania - LEA/COLLIGA

N/Z ratio and energy effects on reaction mechanisms

Contributions from different reaction mechanisms ER FL DIC

Kinematical characteristics

typical of an energy equilibrated system

105

yields(arb. units)

θ=5.2°

----θ=9.25°

-- θ=13.25° --- θ=23°

Charge distributions Staggering in cross sections DIC effects Z>28-30 More fragments for n-poor and at higher E

	σ _{er} (mb)	σ _{FL} (mb)	σ _{Fus} (mb)	ရာ တ _{Reac} (mb)
⁷⁸ Kr+⁴⁰Ca	455±70	9 10±120	1365±190	2390±250
⁸⁶ Kr+ ⁴⁸ Ca	400±60	560±85	960±145	2520±260

Comparison with models Underestimation of the sigma larger b should contribute DNS seems to works better

-> important contribution of quasi-fission events

Further analysis to be done:

- Study of three fragments events and in particular Projectile like Fragment fission, already analyzed at higher energy
- Analysis of Deep Inelastic Contribution as a function of $\ensuremath{\mathsf{N/Z}}$
- Analysis of LCP energy spectra in coincidence with ER and FF
 -> secondary decay, source characteristics (Z. Xiao)
- Refinement of theoretical calculations: comparison with a microscopic transport models to see relation among different mechanisms as a function of impact parameter, possible effect of N/Z (E_{sym})
- Further GEMINI++ calculations for particle energy spectra in order to have information on "a" parameter (P. St-Onge)

Letter Of Intent presented at 3rd SPES Workshop - Oct 2016

Isospin dependence of compound nucleus formation and decay E. De Filippo INFN Catania - J. D. Frankland GANIL - S. Pirrone INFN Catania G. Politi Università and INFN Catania - P. Russotto INFN LNS

Study of isospin effects on the reaction mechanisms with RIB delivered by SPES at LNS

- compound nucleus formation and decay
- competition between Statistical and Dynamical Fission

Interest in the intermediate mass: Kr, Cs, Sn beams on Ca Ni Sn

-> broad domain in n/p ratio in entrance and compound system

In particular

- $^{88-94}$ Kr with 10⁵ - 10⁷ pps @ E/A = 10 - 12 MeV/A

Thank you all for the attention