SYMMETRY - MOTIVATED

TUNING EFFECT IN PARTICLE MASSES

AND NUCLEAR DATA

S.I. Sukhoruchkin

Petersburg Nuclear Physics Institute named by B.P. Konstantinov of NRC Kurchatov Institute 188300 Gatchina Russia

INTRODUCTION

• The Standard Model is a general theory of all interactions in which all three vector interactions (strong, weak and electromagnetic) are united in the representation:

 $SU(3)_{col} \otimes SU(2)_{L} \otimes U(1)_{Y}$

- Particle masses are parameters of the Standard Model. Y. Nambu suggested (1998) that empirical relations in particle masses could be used for the development of the Standard Model.
- The observed ratios are: $(m_{\mu} + m_{e})/2(\delta m_{\pi} m_{e}) = 13.00$. The lepton ratio L=207=13x16 1. neutron mass $m_{n}+m_{e}/2(\delta m_{\pi}-m_{e}) = 115.007$. Ratio $m_{n}/m_{e}=1838.6836605(11)$, shift $\delta m_{n} = 161.65(6)$ keV.

Ratio $\delta m_N / \delta m_n = 8 \times 1.0001(4)$.

$$m_n - m_p = \delta m_N = 1.2933322(4) \text{ MeV};$$

$$m_n = 115 \times 16 m_e - m_e - \delta m_N / 8;$$
 $m_p = 115 \times 16 m_e - m_e - 9 \delta m_N / 8.$

The lepton ratio L= m_{μ}/m_e =206.77 becomes integer 207=9×23=13×16-1 after a small QED radiative correction applied to m_e (it becomes $m_{\mu}/m_e(1-\alpha/2\pi)$ =207.01). The factor $\alpha/2\pi$ =115.9x10⁻⁵, the QED radiative correction to the magnetic moment of the electron (Schwinger term) coincides with the relative value 117(11) 10⁻⁵ of the deviation of δm_{π} = 4.5936(5) MeV from 9m_e = 4.5990 MeV.

- Ratio of parameters of the Standard Model, masses of the muon and Z-boson: m_{μ}/m_{Z} =115.9 $\times10^{-5}$.
- Belokurov and Shirkov suggested (1991) that electron mass also contains this factor $\alpha/2\pi$.
- A common approach is based on R. Feynman remarks: "The theories about the rest of physics are very similar to the theory of quantum electrodynamics: they all involve the interaction of spin ½ objects with spin 1 objects. Why are .. the theories of physics so similar in their structure?".

Distribution of differences between all particle mass values from PDG-2016 (top)

and values known relatively accurate (bottom).

Differences between particle masses Δ M for averaging interval 5 MeV (*top*) and 9 MeV (*bottom*). Stable intervals (marked with arrows) are close to integer numbers of δ =16m_e found in CODATA relations (*top*) and to the b-quark mass estimation 4.2 GeV.

	Particle		\mathbf{m}_{i}	Δ	17	48	104	142	156	174
1	leptons	electron, ν	0.0				106(1)	140(1)		
	μ		105.658			г	106(1)	1		
	τ		1776.82			46(15)	105~(7,8)			
2	Unflav.	${\rm mesons}$				-				
	f_{π}	1 - (0-)	130.7	0.4	***					
	π° π^{\pm}	1 (0) 1 = (0 =)	134.977		1.1.1.1.			140 (1)		
	<i>n</i>	$0^{+}(0^{-+})$	547.86					140 (1)		
	$\rho(770)$	$1^{+}(1^{})$	775.26							
	$\omega(782)$	$0^{-}(1^{})$	782.65						157(1)	175~(1)
	$\eta'(958)$	$0^+(0^{-+})$	957.78		18(1)				159(2)	175~(1)
	$\phi(1020)$	$0^{-}(1^{})$	1019.46							173(3)
	$b_1(1235)^*$	$1^+(1^{+-})$	1229.5	3.2	10 (0)	46(2)			154(4)	174(4,5)
	$f_2(1270)^*$	$0^{+}(2^{++})$	1275.5	0.8	19 (2)	46(2,5)			7	
	$f_1(1285)$	$0^+(1^{++})$	1282.0	0.5			102(2)	142(2,3)		
	$\eta(1295)^{**}$	$0^+(0^{-+})$ $1^-(2^{++})$	1294	4	19(2)	46 (2)			190 (7)	
	$n(1405)^*$	$0^+(0^{})$	1318.3 1408.8	0.5 1.8	18 (4.5)	40 (5)			136 (7)	
	$f_1(1420)^*$	$0^+(1^{++})$	1426.4	0.9	18 (5)	47 (8,9)	105(4,6)	142 (3)	154 (6)	
	$n(1475)^{**}$	$0^{+}(0^{-+})$	1476	4		50 (7.9)		141 (5)	156 (7.8)	
	$f_{0}(1500)^{**}$	$0^{+}(0^{++})$	1504	6	16 (6)			/	158 (9)	
	$f_{0}^{\prime}(1525)^{**}$	$0^+(2^{++})$	1525	5		49 (11)		142(4.7)	7)	
	$\pi_1(1600)^{**}$	$1^{-}(1^{-+})$	1662	8		()		142 (6)	158(9)	
	$\eta_2(1645)^{**}$	$0^{+}(0^{-+})$	1617	5		50(12)		141 (5)	156 (12)	
	$\omega_{3}(1670)^{**}$	$0^{-}(3^{})$	1667	4		45 (12)		142 (7)	156 (13)	
	$\pi_2(1670)^*$	$1^{-}(2^{-+})$	1672.2	3.0	17 (7)		105 (7)	140 (8)] .,	
	$\rho_3(1690)^*$	$1^+(3^{})$	1688.8	2.1	17 (7,8)				157(11)	176(6)
	$f_0(1710)^{**}$	$0^{+}(0^{++})$	1723	6		50(13)		142(10)	_ ``	· · · ·
	$\phi_3(1850)^{**}$	$0^{-}(3^{})$	1854	7	16 (9)			142 (11)	156(14)	
	$a_4(2040)^{**}$	$1^{-}(4^{++})$	1995	8	15(10)	50(17)		142 (11)	1	172~(7)
3	strange	mesons							-	
	K^{\pm}	$-1/2(0^{-})$	493.677							
	$K^{*}(892)^{*\pm}$	$1/2(1^{-})$	891.66		ale ale ale	48(1)				
	$K^{*}(892)^{*0}$	$\frac{1}{2}(1^{-})$	895.81	7	***	46 (2,4)			1E6 (2E 6)	
	$K_1(1270)^{**}$	$\frac{1}{2}(1^{+})$ $\frac{1}{2}(1^{+})$	1403	7	19 (3)	40 (5,4)			150 (5,5,0)	174 (4)
	$K_{2}^{*}(1430)^{\pm *}$	$1/2(2^+)$	1425.6	1.5	17 (4)	47 (6,7)	104(3,5)	142(2)	154(5)	(-)
	$K_2^*(1430)^{\circ *}$	$1/2(2^+)$	1432.4	1.3	***				(
	$K_2(1770^{**})$	$\frac{1}{2(2^{-})}$	1773 1776	8		47 (14)			156(12)	
	$K_{4}^{3}(1100)$	$1/2(3^{+})$ $1/2(4^{+})$	2045	9		50(17)				175(8)
4	charmed	mesons				()				· · ·
	D°	$1/2(0^{-})$	1864.83				103 (9)	142(10)		176~(6)
	D^{\pm}	$1/2(0^{-})$	1869.58		16 (9)	47~(16)		141 (12)	155 (15)	175 (8)
	$D^*(2007)^{\circ}$	$1/2(1^{-})$	2006.85		***				-	
	$D^*(2010)^{\pm}$	$1/2(1^{-})$	2010.28		15(10,11)		102(10)	141 (12)	156(14)	
	$D_1(2420)^{\circ}$	$1/2(1^+)$	2420.8	0.5	مقد مقد مؤد	50 (18,19)	103 (11)		157 (16)	
	$D_{2}^{*}(2460)^{\circ}$ $D^{*}(2460)^{\pm}*$	$\frac{1}{2}(2^+)$ $\frac{1}{2}(2^+)$	2460.57 2465 4	1 2	***		104 (19)			
	<u>2</u> (2400)	1/2(2)	2400.4	T.O			104 (12)			
1										

Table. Particle masses (in $\underline{\mathrm{MeV}}$) known with the uncertainty less than 6-10 MeV.

	Particle		$\mathbf{m}_{\mathbf{i}}$	Δ	17	48	104	142	156	174
5	charmed	strange	mesons						1	
	D_s^{\pm}	$0^+(0^-)$	1968.27				103 (9)	144(13)		
	$D_s^{\star\pm}$	$0(?^{?})$	2112.1	0.4			102 (10)	144 (13,14)		174(9)
	$D^{*}_{*0}(2317)^{\pm}$	$0(0^{+})$	2317.7	0.6			103 (11)	142 (15)	Ľ	
	D., (2460)±	0(1+)	2459 5	0.6			. ,	142 (15)	ł	174 (10)
	$D_{s1}(2536)^{\pm}$	$0(1^+)$	2535.10	0.0	17 (14)			142 (10)		173 (13)
	$D_{s1}^{*}(2533)^{*}$	$0(1^+)$ $0(2^+)$	2569.1	0.8	11 (14)		104(12)			113 (13)
	$D_{s1}^{*}(2700)^{\pm}*$	0(1-)	2708.3	3.4			· /			173(13,16)
6	bottom	mesons								
	B^{-}	$1/2(0^{-})$ $1/2(0^{-})$	5279.31		***					
	\tilde{B}^*	$1/2(1^{-})$	5324.65							
	$B_1(5721)^{+*}$	$1/2(1^+)$	5725.9	2.7		1	06(17, 18, 19)			
	$B_1(5721)^{\circ*}$ $B^*(5747)^{+*}$	$1/2(1^+)$ $1/2(2^+)$	5726.0 5727 2	1.3	***		102 (20)			175 (22)
	$B_2^{(5141)}$ $B_2^*(5747)^{\circ}$	$1/2(2^+)$ $1/2(2^+)$	5739.5	0.7	***		103 (20)			110 (20)
	$B_{J}^{2}(5970)^{+}$	1/1(??)**	5964	5	15 (24)					172 (24)
_	$B_J(5970)^{\circ}$	1/1(??)**	5971	5	***					172 (24)
7	P°	strange	mesons 5366-82			49 (27)				
	$B_{s}^{*}*$	$0(1^{-})$	5415.4	1.5		49 (27)				
	$B_{s1}(5830)^{\circ}$	$0(1^+)$	5828.63		17 (22)		103 (18,21)			
0	$B^*_{s2}(5640)^{\circ}$	0(2+)	5839.84			48 (28)	103(20)			
0	B**	$0(0^{-})$	6275.1	1.0						
9	cē	mesons								
	$\eta_c(1S)$	$0^+(0^{-+})$	2983.4	0.5	15 (16)		102(14)		150 (10)	
	$J/\psi(1S)$	$0^{-}(1^{})$ $0^{+}(0^{++})$	3096.90		17 (17)			141 (18)	158 (18)	
	$\chi_{c1}(1P)$	$0^+(1^{++})$	3510.66		14 (18)	46 (22)		141 (10)		174 (21)
	$h_c(1P)$	$?^{?}(0^{+-})$	3525.38		14 (18)					
	$\chi_{c2}(1P)$	$0^+(2^{++})$ $0^+(0^{-+})$	3556.20	1.9		46 (22)		141(18)		
	$\eta_c(2S)$ $\psi(2S)$	$0^{-}(1^{})$	3686.10	1.2		47 (23)				173 (21)
	$\psi(3770)$	0-(1)	3773.13			49 (24)			154(19)	
	$\psi(3823)^*$	$?^{?}(2^{})$	3822.2	1.2	15 (10)	49 (24)	105(15)			
	X (3872) X (3900)*	$1^+(1^{++})$	3871.09	24	15 (19)	49 (25)				
	$X(3915)^*$	0+(?++)	3918.4	1.9	10 (10)	47 (26)	106 (16)			
	$\chi_{c2}(1P)^*$	$0^{+}(2^{++})$	3927.2	2.6		. ,	105(15)		154(19)	
	$X(4020)^*$	1(?')	4024.1	1.9	15(20) 15(20)		106(16)			
	$X(4140)^*$	$0^+(?^{?+})$	4146.9	3.1	13 (20)					
	$\psi(4160)^{**}$	0-(1)	4191	5					156 (20)	
	$X(4260)^{**}$	$?^{?}(1^{})$	4251	9					150 (00)	
	Λ (4360)** ψ (4415)**	0-(1)	4346.9 4421	4					150(20)	
	X(4660)**	??(1)	4643	9						
10	$b\bar{b}$	mesons								
	$\eta_b(1S)^*$	$0^+(0^{-+})$ $0^-(1^{})$	9399.0	2.3						
	$\chi_{b0}(1P)$	0+(0++)	9859.44							
	$\chi_{b1}(1P)$	$0^+(0^{++})$	9892.78		19 (25)					
	$h_b(1P)^*$	$?^{?}(1^{+-})$	9899.3	0.8	10 (05)					
	$\chi_{b2}(1P)$ $\Upsilon(2S)$	$0^{-}(1^{})$	9912.21 10023.26		19 (25)			140 (21)		
	$\Upsilon(1D)^*$	0-(2)	10163.7	1.4			105 (23)	140(21) 140(21)		
	$\chi_{b0}(2P)$	$0^+(0^{++})$	10232.5	0.4						
	$\chi_{b1}(2P)$	$0^+(1^{++})$ $0^-(2^{+-})$	10255.46 10268.65				105 (22)			
	$\Upsilon(3S)$	$0^{-}(1^{})$	10208.00	0.5			100 (23)		157 (22)	174 (25)
	$\chi_{b1}(3P)^*$	0+(1++)	10512.1	2.3	17 (26)				157 (22)	
	$\Upsilon(4S)^*$	$0^{-}(1^{})$	10529.4	1.2	17 (26)					174 (25)
	$X(10610)^{\pm *}$ $X(10610)^{\circ **}$	$1^+(1^+)$ $1^+(1^+)$	10607.2	2.0						
	74(10010)	1.(1.)	10003	0	1					

Top: Spacing distribution in mass spectrum in high-energy region.

Bottom: Application of AIM Method to x=4423 MeV (AIM upward and downward directions, separately).

Distribution of intervals adjacent to $x=142 \text{ MeV} (m_{\pi})$ and $x=493 \text{ MeV} (m_{k})$.

Tuning effect in particle masses. Different estimates of constituent quark masses.

Estimation of the baryon constituent quark mass Mq=441 MeV

Fig. 2a. (C.D. Roberts et al.). QCD gluon-quarkdressing effect calculated with Dyson-Schwinger Equation, initial masses m; constituent quark mass arises from a cloud of low-momentum gluons attaching themselves to the current-quark; this is chiral symmetry breaking: nonperturbative effect that generates a quark mass from nothing even at m=0 (bottom).

Fig.2b. (L.Glozman *et al.*). Calculation of nonstrange baryon (left) and lambda-baryon masses as a function of interaction strength within Goldstone Boson Exchange interaction Constituent Quark Model; initial baryon mass $1350 \text{ MeV} = =3.450 \text{ MeV} = 3M_q$ is marked as bottom "+" on left vertical axis.

Table B. Linear dependence of excitations in near-magic nuclei (double boxed) upon numbers of protons in Z=14-20 shell (1st line) and numbers of valence neutrons (2nd line, boxed) is compared with the integer numbers of the parameter of 161 keV = $\Delta^{TF} = \delta m_N / 8$ determined in Z=50,51 nuclei (see Proc. QCD14, P.270, Fig.2 and Proc. QCD15, P.214, Table 3, Figs. 3-5).

(Z-14)/2	3		2	1	1	1	1	0	0
Ν			Γ	Δ N=1	$\Delta N = 2$		$\Delta N=7$		
^{A}Z	^{41}Ca		$^{39}\mathrm{Ar}$	$^{37}\mathrm{S}$	$^{38}\mathrm{S}$	^{33}S	^{43}S	$^{32}\mathrm{Si}$	$^{35}\mathrm{Si}$
E^*	0.0	1943]	646.2	1292	322	320.7	1942	973.9
$2J^{\pi}$	7^{-}	3-	3-	3-	2^{+}	D	7^{-}	2^{+}	(3^{+})
$n\frac{\delta m_N}{8}$	0.0	1941	1293	646	1293	322	322	1941	971
n		12		4	8	2	2	8	6
^{A}Z	³³ Mg		$^{41}\mathrm{K}$		$^{47}\mathrm{Sc}$	$^{47}\mathrm{V}$	^{50}V	$^{51}\mathrm{V}$	$^{55}\mathrm{V}$
E^*	159	484	980.4	1293.6	807.9	1294.9	320.2	320.1	323.3
$2J_o^{\pi}$	3-		3^{+}		2^{+}	3-	6^{+}	7^{-}	(7^{-})
$2J^{\pi}$	(7^{-})	(3^{-})	4^{+}	7^{-}	3-	11^{-}	4^{+}	5^{-}	(5^{-})
$n\frac{\delta m_N}{8}$	161	483	971	1293	808	1293	322	322	322
n	1	3	6	8	5	8	2	2	2
11	-	0	0	0	-	0	—	—	—

D^{AIM} - distribution in ⁴⁰Ca levels for x=1289 keV close to 8×17δ'= δm_N=1293.3 keV in two energy regions (in upwards direction, Δ = 3 keV) with the maximum at 2749 keV ≈ (17/8) ×1293.3 keV = 2748 keV.

Table C. New data (*) on ⁵³Ni and ⁵³Co excitations with the configuration of nucleon as three holes in ⁵⁶Ni core. Parameters of the residual interaction of valence nucleons and holes (double

boxed) are compared with the same parameters in Z-50,51- and Z,N - nuclei. Boxed are excitations corresponding to maxima in sum distributions shown in Figs.6-8 in Proc. QCD-15.

^{A}Z	53 Ni $2J_o = 7$ -			⁵⁸ Ni	⁵⁹ Ni	⁶¹ Ni	⁶³ Ni		
E^*	320(3)	1292*	1456^{*}	1454.2	339.4	1454.8	87.1	1289.1	1451
$2J^{\pi}$	(5^{-})	(3^{-})	(11^{-})	2^{+}	$3^{-}-5^{-}$	7^{-}	$1^{-}-5^{-}$	9^{+}	(5,7,9)
$n\frac{\delta m_N}{8}$	322	1293	1454	1454	322	1454		1293	1454
n	2	8	9	9	2	9		8	9
^{A}Z	^{53}Mn					$^{55}\mathrm{Mn}$			
E^*	378	1289.9)	1441.3	2563.1	2573.1	1289.1	1292.1	1293.0	2582
$2J^{\pi}$	5-	3-	(11^{-})	13^{-}	7^{-}	$5^{-}-11^{+}$	11-	(1^{-})	
$n\frac{\delta m_N}{8}$	322	1293	1454	2586	2586	1293	1283	1293	2586
n	2	8	9	16	16	8	8	8	16
^{A}Z	$^{53}\mathrm{Co}$	$^{59}\mathrm{Co}$				$^{69}\mathrm{Cu}$	$^{71}\mathrm{Cu}$		$^{73}\mathrm{Cu}$
E^*	646.2*	1291.6)	1459	2581.7	2585.8	1297.9	1453.3	2576(3)	1298.0
$2J^{\pi}$	7-	3-	11^{-}	$3^{-}-7^{-}$	7^{-}	$3^{-}-1, 3^{-}$	$3^{-}-9^{-}$	(13^{-})	$(3^{-}, 7^{-})$
$n\frac{\delta m_N}{8}$	647	1293	1454	2586	2586	1293	1454	2586	1293
n	4	8	9	16	16	8	9	16	8

Table. Representation of parameters of tuning effects in particle masses (top) and nuclear data (bottom) with the expression $n \cdot 16m_e(\alpha/2\pi)^X M$ and different values of the X-power of QED factor $\alpha/2\pi$ and integers M and n=1,13-18. Boxed are five groups of values differing with $\alpha/2\pi = 115.9 \cdot 10^{-5}$.

Х	М	n = 1	n = 13	n = 16	n = 17	n = 18	n = 18.6	Comments
-1	3/2			$m_t = 172.0$				
GeV	1	$16M_q = \delta^{\circ}$	M _Z =91.2	$M_{\rm H}{=}115$		$M_{\rm H} = 126$		$\delta^{\circ} = 7.06$
	1/2	$(m_b - M_q)$		$M^{L3}=58$		<u>. </u>		
0	1	$2m_d$ - $2m_e$	$m_{\mu}=106$	$f_{\pi} = 130.7$	m_{π} - m_{e}	$\Delta M_{\Delta} = 147$	$2M_q$	
MeV	3			$M"_q = m_\rho/2$		$\overline{M_q}=441=\Delta \overline{E}_B$		NRCQM
1	1	$16m_e = \delta = 8\varepsilon_\circ$	118		$k\delta$ -m _n -m _e =	$170 = m_e/3$		Part.
					=161.651			${ m mass}$
keV	8				$\delta m_N = 1293$			CODATA
1	1	9.5= $\delta'=8\varepsilon'$	123	152	$\Delta^{TF}{=}161$	170 (Sn)	$\varepsilon_o=2m_e$	
keV	3				$484 (E^*)$	$512 ({\rm Pd})$	I	
	4		492		648 (Pd)	682(Co)		Nuclear
	8		984	1212	$1293 \ (E^*)$	1360 (Te)		data
2	1,4	11= δ'' =8 ε''	143	176	749 (Br,Sb)		$\varepsilon'=1188$	Neutron
eV	4,8		570 (Sb)		1500 (Pd,Hf)	X=3	$\varepsilon''=1.35$	reson.

Conclusions

Here we used data on scalar mass M=125.0 GeV and CODATA ratio m_n/m_e to find out an explanation of the systematic appearance of nuclear mass/energy intervals close to mass differences of the nucleon, leptons and the pion. The relation $(n \cdot 16m_e - m_e - m_n)/\delta m_N = 1/8.001(2)$ and the similar long-range correlations in particle masses could be checked with the new data.

• Relation between observed stable nuclear intervals and particle masses can be considered in connection with recently obtained mass of the scalar field, the ratios $m_{\mu}/M_{Z}=\alpha/2\pi$ and $(1/3m_{e})/M_{H}=(\alpha/2\pi)^{2}$. There is a possibility that they are reflections of the fundamental relations between SM-parameters (which were mentioned as a future "super-duper" model by R. Feynman).

• Observed analogy between tuning effects in particle masses and in nuclear data should be theoretically based on QCD as a part of Standard Model. It is in line with Y. Nambu suggestion about the role of empirical relations in particle masses for the SM development.

• Scientific potential of nuclear physics can be connected with a fundamental role of QCD in the Standard Model and with the role of QED parameters.

Thank you for your attention