

Comparison of heavy-ion transport simulations: Collision integral in a box

Yingxun Zhang (张英逊) China Institute if Atomic Energy

Yongjia Wang, Maria Colonna, Pawel Danielewicz, Akira Ono, Betty Tsang, Hermann Wolter, Jun Xu,

Lie-Wen Chen, Dan Cozma, Zhao-Qing Feng, Che-Ming Ko, Bao-An Li, Qing-Feng Li, S. Das Gupta, N. Ikeno, C.M. Ko, B.A.Li, Q.F.Li, Z.X. Li, S. Mallik, T. Ogawa, D. Oliinychenko, M. Papa, H. Petersen, Jun Su, Taesoo Song, Janus Weil, Ning Wang, Feng-Shou Zhang, Guo-Qiang Zhang, and Zhen Zhang,

.

Hermann is working on the transport paper

Isospin asymmetric Equation of State $E(\rho, \delta) = E(\rho, \delta = 0) + S(\rho)\delta^2 + O(\delta^4)$

It is a fundamental properties of nuclear matter, and is very important for understanding

- properties of nuclear structure
- properties of neutron star
- properties of heavy ion reaction mechanism

Probing the Equation of State via Heavy ion collisions

M.B.Tsang, Yingxun Zhang, et.al., PRL2009

Why the conclusions are different from different transport codes?

- 1, Different physics inputs
 - mean field potential,
 - in-medium n-n cross section,
 - initial density distribution,

• • • • • • • •

2, Different technical assumption for solving the transport equation

• BUU, QMD, shape of t.p., full/parallel ensemble,

Systematic comparison of transport codes under the control condition

Efforts on this direction, since 2004, 2009, 2014, 2015, 2016,

Transport 2014, Shanghai

Writing group

J. Xu L.W. Chen

Transport Code Comparison Project

B. Tsang

H. Wolter

Y.X. Zhang

	Boltzmann	-like (9)
	Code Name	Who did?
1	BLOB	P. Napolitani
2	SMF	M. Colonna
3	GiBUU(Sky)	J. Weil/U. Mosel
4	GiBUU(RMF)	J. Weil
5	RVUU	Taesoo Song
6	IBUU(04)	Jun Xu
7	IBL	Wen-Jie Xie
8	RBUU	Kyungil Kim
9	pBUU	P. Danielewicz

....

MD-like (9)

	Code Name	Who did?
1	AMD	Akira Ono
2	CoMD	Maximo Papa
3	ImQMD-CIAE	Ying-Xun Zhang
4	IQMD	Ch. Hartnack
5	IQMD-BNU	Jun Su
6	IQMD-SINAP-	Guo-Qiang Zhang
7	LQMD-IMP	Zhao-Qing Feng
8	UrQMD (L=1)	Yong-Jia Wang
9	TuQMD	Dan Cozma

PHYSICAL REVIEW C 93, 044609 (2016)

Understanding transport simulations of heavy-ion collisions at 100A and 400A MeV: Comparison of heavy-ion transport codes under controlled conditions

Christoph Hartnack,⁶ Kyungil Kim,¹² Youngman Kim,¹² Che-Ming Ko,¹³ Bao-An Li,¹⁴ Qing-Feng Li,¹⁵ Zhu-Xia Li,⁵ Paolo Napolitani,¹⁶ Akira Ono,¹⁷ Massimo Papa,¹⁸ Taesoo Song,¹⁹ Jun Su,²⁰ Jun-Long Tian,²¹ Ning Wang,²² Yong-Jia Wang,¹⁵ Jun Xu,^{1,*} Lie-Wen Chen,^{2,†} ManYee Betty Tsang,^{3,‡} Hermann Wolter,^{4,§} Ying-Xun Zhang,^{5,||} Joerg Aichelin,⁶ Maria Colonna,⁷ Dan Cozma,⁸ Pawel Danielewicz,³ Zhao-Qing Feng,⁹ Arnaud Le Fèvre,¹⁰ Theodoros Gaitanos, Janus Weil,¹⁹ Wen-Jie Xie,²³ Feng-Shou Zhang,²⁴ and Guo-Qiang Zhang¹

In the simulations of HICs

- Initial conditions are hard to control
- there is no theoretical results to benchmark the codes

FIG. 1. Initial density profiles for BUU-type (left) and QMD-type (right) models.

Design the BOX simulations Homework

Advantages in BOX simulations

- Initial conditions are straightforward to realize,
- We can test collision and mean field part separately
- there are some exact limits available from kinetic theory or Landau theory,

Keep in mind:

• Fundamental differences may be present between an idealized kinetic equation and a simulation,

• One cannot expect BUU and QMD completely agree with each other,

• The box calculations are performed with **periodic boundary conditions (BC)**.

•Details of periodic boundary conditions

- 1. a box of volume $V = L_1 * L_2 * L_3$, where the system is confined.
- 2. The position of the center of box is $(L_1/2, L_2/2, L_3/2)$.
- 3. In order to keep all particles inside the box, a particle leaving the box has to enter it on the opposite side, keeping the same momentum.

HW2, RVUU: -10, 10 fm, GiBUU: -10, 10fm, UrQMD:-10:10fm

Homework 1 (Cascade mode) in BOX simulations

Initialization:

- Uniform density $\rho_0=0.16 \text{ fm}^{-3}$
- A=1280, n=p=640
- Particle positions are initialized randomly from 0 to L_k.
- Particle momenta are initialized randomly in a sphere with Fermi momentum p_F =265 MeV/c for T=0 case, or with the Fermi distribution at T=5MeV

Cross section

• constant isotropic elastic cross section of \sigma=40 mb

The simulation should be followed until t=140 fm/c, with a recommended step of Dt=0.5 or 1.0 fm/c.

6 calculations: 3 modes (C,CBOP1, CBOP2), and 2 temperatures (T0,T5).

	Collision without PB	Collision with PB_op1 (same in HIC)	Collision with PB_op2 (f_i=Fermi-Dirac)
T=0MeV	СТО	CBop1T0	CBOP2T0
T=5MeV	CT5	CBop1T5	CBOP2T5

16 transport codes in comparison with BOX condition

	BUU-type	Contributor		QMD-type	
1	BUU-VM	S. Mallik	1	CoMD	М. Рара
2	Gibuu	J. Weil	2	ImQMD	Y.X.Zhang, Z.X. Li
3	IBUU	Ju Xu, L.W.Chen, B.A.Li	3	IQMD-BNU	J.Su, F.S.Zhang
4	pBUU	P. Danielewicz	4	IQMD-IMP	Z.Q.Feng
5	RVUU	T. Song, Z. Zhen, C.M. Ko	5	IQMD-SINAP	G.Q.Zhang
6	SMF	M.Colonna	6	JAM	A.Ono, N.Ikeno, Y.Nara
7	SMASH	D. Oliinychenko	7	JQMD	T. Ogawa
			8	TuQMD	D. Cozma
			9	UrQMD	Y.J.Wang, Q.F.Li

Results without Pauli-Blocking

A. Exact limits of collision rates

$$\begin{aligned} \frac{\mathrm{d}N_{\mathrm{coll}}}{\mathrm{d}t} &= \frac{A}{2\rho} \, g^2 \int \frac{\mathrm{d}^3 p \, \mathrm{d}^3 p_1}{(2\pi\hbar)^6} \, v_{\mathrm{rel}} \, \sigma^{\mathrm{med}} \, f(p) \, f(p_1) \\ &= \frac{1}{2} A \, \rho \, \langle v_{\mathrm{rel}} \, \sigma^{\mathrm{med}} \rangle \,. \end{aligned}$$
 Non-relativistic

5.		F	ermi	Bolt	zmann
		T = 0	$T=5~{\rm MeV}$	T = 0	$T = 5 { m MeV}$
Non-relativistic	Num. Int.	118.1 ^a	122.1	115.9 ^a	120.1
5	Cascade	118.2	122.1	115.9	120.1
Quasi-relativistic	Num. Int.	115.0	118.8	112.3	116.3
- 2011 A	Cascade	115.0	118.8	112.3	116.3
Relativistic	Num. Int.			111.4	115.4
	Cascade $(\delta t = \alpha \Delta t)$	114.0	117.8	111.4	115.4
×	Cascade $(\delta t = \Delta t)$	115.2	119.0	112.7	116.7

the sheet drawland a second sheet and a farmer of a last second to the second s

Collision criterion

Type A: Closest distance approach

• In two particle c.m.

$$b < \sqrt{\sigma^{\text{med}}/\pi}$$
:

$$\left|\frac{\underline{\Delta r \cdot p}}{p}\right| < \left(\frac{\underline{p}}{\sqrt{p^2 + m_1^2}} + \frac{\underline{p}}{\sqrt{p^2 + m_2^2}}\right) \delta t/2$$

$$\boldsymbol{\beta} = (\boldsymbol{p}_1 + \boldsymbol{p}_2) / (\boldsymbol{\widetilde{E}}_1 + \boldsymbol{E}_2)$$
$$\boldsymbol{p} = \gamma \left(\frac{\boldsymbol{p}_1 \cdot \boldsymbol{\beta}}{\boldsymbol{\beta}} - \boldsymbol{\beta} \boldsymbol{E}_1 \right) \frac{\boldsymbol{\beta}}{\boldsymbol{\beta}} + \left(\boldsymbol{p}_1 - \frac{\boldsymbol{p}_1 \cdot \boldsymbol{\beta}}{\boldsymbol{\beta}} \frac{\boldsymbol{\beta}}{\boldsymbol{\beta}} \right)$$

$$\Delta \boldsymbol{r} = (\boldsymbol{\gamma} - 1)\{(\boldsymbol{r}_1 - \boldsymbol{r}_2) \cdot \boldsymbol{\beta}/\boldsymbol{\beta}\} \boldsymbol{\beta}/\boldsymbol{\beta} + (\boldsymbol{r}_1 - \boldsymbol{r}_2)$$

• Computational frame

$$\delta t = \alpha \Delta t$$
 $\alpha =$

$$\alpha = \gamma \frac{E_1^* E_2^*}{E_1 E_2}$$

Type B: probability of binary collision

$$\xi < P = \frac{1}{2} \sigma v_{ij} \rho_i \Delta t$$
 smf

$$P = 1 - e^{-\sigma v_{ij} \rho_i \Delta t}$$
 CoMD

$$P = \frac{\sigma}{N_{\mathrm{TP}}} \frac{1}{\gamma V_{\mathrm{cell}}} v_{ij}^* \alpha \Delta t$$
 pBUU

BUU-type	Distance condition	Time condition	Collision order
BUU-VM	$\pi d_{ m L}^{*2} < \sigma$	$ t^*_{coll} - t^*_0 < \frac{1}{2}\Delta t$	fixed order
GiBUU	$\pi d_{ m L}^{*2} < \sigma/N_{ m TP}$	$ t_{coll}^* - t_0^* < \frac{1}{2}\Delta t$	fixed order
IBUU	$\pi d_{\perp}^{\star 2} < \sigma$	$ t_{coll}^* - t_0^* < \frac{1}{2}\Delta t$	fixed order
pBUU	$i, j \in \text{the same } V_{\text{cell}}$ volume	$P = \frac{\sigma}{N_{\rm TD}} \frac{1}{\gamma V_{\rm coll}} v_{ij}^* \alpha \Delta t$	randomly nominate (i, j) pairs
RVUU	$\pi d_{\perp}^{*2} < \sigma_{\max}/N_{\rm TP}, P = \sigma/\sigma_{\max}$	$ t_{\text{coll}}^{\bullet} - t_0^{\bullet} < \frac{1}{2}\Delta t$	fixed order
SMASH	$\pi d_{ m L}^{*2} < \sigma/N_{ m TP}$	$t_{\mathrm{coll}}^{(\mathrm{ref})} \in [t_0, t_0 + \Delta t]$	ordered by $t_{coll}^{(ref)}$
SMF	j = closest to i in same ensemble	$P = \frac{1}{2}\sigma v_{ij}\rho_i\Delta t$	cyclic with random starting for
QMD-type	Distance condition	Time condition	Collision order
CoMD	$j = \text{closest to } i, j > i^{-a}$	$P = 1 - e^{-\sigma v_{ij} p_{i} \Delta t}$	cyclic with random starting for
ImQMD	$\pi d_{\perp}^{*2} < \sigma$	$ t_{coll} - t_0 < \frac{1}{2} \gamma \Delta t$	fixed order
IQMD-BNU	$\pi d_{\perp}^{*2} < \sigma$	$ t_{coll}^* - t_0^* < \frac{1}{2}\Delta t$	fixed order
IQMD-IMP	$\pi d_{\perp}^{*2} < \sigma$	$ t_{coll}^* - t_0^* < \frac{1}{2}\gamma \Delta t$	fixed order
IQMD-SINAP	$\pi d_{\perp}^{*2} < \sigma$	$ t_{coll} - t_0 < \frac{1}{2}\gamma \Delta t$	fixed order
JAM	$\pi d_{ m L}^{*2} < \sigma$	$\bar{t}_{\text{coll}} \in [t_0, t_0 + \Delta t]$	ordered by \overline{t}_{coll}
JQMD	$d_{\perp}^{*} < b_{ m max}, \ P = \sigma/\pi b_{ m max}^{2}$	$ \overline{t}_{coll} - t_0 < \frac{1}{2}\Delta t$	fixed order
TuQMD	$\pi d_{\perp}^{*2} < \sigma$	$t_{1-}^{*}, t_{2-}^{*} < t_{\rm coll}^{*} < t_{1+}^{*}, t_{2+}^{*}$	randomly ordered
UrQMD	$\pi d_{ m L}^{*2} < \sigma$	$t_{\text{coll}}^{(\text{ref})} \in [t_0, t_0 + \Delta t]$	ordered by $t_{coll}^{(ref)}$
Simple Cascade	Distance condition	Time condition	Collision order
rel. $(\delta t = \alpha \Delta t)$	$\pi d_{\perp}^{*2} < \sigma$	$ t_{coll}^{\bullet} - t_0^{\bullet} < \frac{1}{2} \alpha \Delta t$	fixed order
rel. $(\delta t = \Delta t)$	$\pi d_{\perp}^{*2} < \sigma$	$ t_{\text{coll}}^{\bullet} - t_0^{\bullet} < \frac{1}{2}\Delta t$	fixed order
anasi pelativistic	$\pi d^{(ref)2}_{c} < \sigma$	$ t^{(ref)} - t_n < \frac{1}{2}\Delta t$	fixed order

TABLE IV: Characteristics of collision procedures in different codes and a simple cascade code. The notation "P = x" stands for a condition that is satisfied randomly with the probability x. Comma conversion and that is satisfied randomly with the probability x.

The way on determining the collision in closest distance approach, does not preclude the spurious collisions

Results of without Pauli blocking

Independent of time interval in simulations

Non-relativistic	Num. Int.	118.1 ^a	122.1	115.9 ^a	120.1		
	Cascade	118.2	122.1	115.9	120.1	122.8	127.3
Quasi-relativistic	Num. Int.	115.0	118.8	112.3	116.3		
92194	Cascade	115.0	118.8	112.3	116.3	119.0	123.2
Relativistic	Num. Int.			111.4	115.4		
	Cascade $(\delta t = \alpha \Delta t)$	114.0	117.8	111.4	115.4	118.1	122.3
3e	Cascade $(\delta t = \Delta t)$	115.2	119.0	112.7	116.7	118.4	122.7

the shared and the second share and a farmer of the second states

Results of with Pauli blocking

Pauli-Blocking probability: 1-(1-f1)*(1-f2)

In QMD, fi is calculated in each event

Code name	Occupation probability fs	Blocking probability ^a	Additional constraints
BUU-VM	f_{i} in a sphere with $\mathbf{R}_{a} = \operatorname{fin}, \mathbf{R}_{p} = \operatorname{MeV}/c$	$(1-f_j)(1-f_j)$	ou
GIBUU	f_1 in phase-space cell with dr = 1.4 fm, dp = 68 MeV/c	$(1-f_j)(1-f_j)(1-f_j)$	g
IBUU	f_i in phase-space cell with dx = 2.0 fm, dp = 100 MeV/c ^b	$1 - (1 - f_i)(1 - f_j)$	ю
pBUU	f. in same and adjacent spatial cells ^c	$(1-(1-f_1))$	210
RVUU	f_i in phase-space cell with dx = 1.14 fm, dp = 331 MeV/ c^d	$1-(1-f_i)(1-f_j)$	OI
SMASH	f_t in a sphere with dp = 80 MeV and dx = 2.2 fm [*]	(f-1)(f-1)	QI
SMF	J _i in sphere with radius 2.53 fm with Gaussian weight in momentum space ⁶	$1-(1-f_i)(1-f_j)$	Q
CoMD	f. in h ² (need comments from Massimo.)	$ f_{i}, f_{j} < f_{max} = 1.05 - 1.1$	yes ⁷
ImQMD	$\int_{A} = 4 \sum_{k \in \tau } (\mu_{f(k)}) e^{-(R_{k} - R_{k})^{2}/ 2(\Delta x)^{2} } e^{-(R_{k} - R_{k})^{2}/ \Delta x ^{2}/R^{2}} h^{2} (\Delta x)^{2} = 2 \operatorname{fm}^{2}$	(I-1)(I-1)(I-1)	01
IQMD-BNU	$f_i = 4 \sum_{k \in \tau} (u_{f(k)} e^{-(R_k - R_i)^2 / [n(\Delta_k)^2]} e^{-(R_k - R_i)^2 \cdot n(\Delta_k)^2 / n^2}$ $(\Delta_K)^2 = 2 \operatorname{Im}^2$	$(1-t)(1-t_j)(1-t_j)$, seaf
IQMD-IMP	$f_{t} = \sum_{k\neq t} V_{contup}^{tk} / V_{0}$ with the hard sphere overlap volume V_{contup}^{tk} determined by dr = 3.367 fm, dp = 89.3 MeV/c (read annumber from Zhuo-Qing.)	$1-(1-f_i)(1-f_j)$	<u>e</u>
IQMD-SINAF	$\int_{V} \int_{V} = 4 \sum_{k \in \tau} \frac{(k_{\mu} x_{k})}{(k_{\mu} x_{k})} e^{-(R_{k} - R_{k})^{2}/ \pi(\Delta x) ^{2}} e^{-(R_{k} - R_{k}^{2})^{2}/\pi^{2}} \pi(\Delta x)^{2}/h^{2}$	$1 - (1 - f_i)(1 - f_j)$	0
MAL	$f_{i} = 4 \sum_{k \in \gamma} (k_{i'(i)} e^{-(R_{k} - R_{i})^{2}/ z(\Delta z)^{2} } e^{-(R_{k} - R_{i})^{2}/n^{2}}$ with $(\Delta x)^{2} = 2$ fm ²	(1-I)(1-I)(1-I)	QI
JQMD	$\int_{t} = 4 \sum_{k \in \tau} (k_{p^{(1)}}) e^{-(R_{k} - R_{1})^{2}/ \eta(\Delta x) ^{2}} e^{-(P_{k} - R_{1})^{2} \cdot \eta(\Delta x)^{2}/h^{2}}$ $(\Delta x)^{2} = 2 \operatorname{fm}^{2}$	$1-(1-f_i)(1-f_j)$	0
TuQMD	$f_s = \sum_{k\neq s} V_{\text{escripp}}^{\text{tk}} V_a$ with the hard sphere overlap volume $V_{\text{escripp}}^{\text{tk}}$ determined by $\text{dir} = 3.0 \text{ fm}$, $\text{dp} = 240 \text{ MeV}/c$	$1-(1-f_i)(1-f_j)$	ł sał
UrQMD	$f_i = 4 \sum_{k \in r, (k, r_i)} e^{-(R_k - R_i)^2 / [2(\Delta x)]^2} e^{-(R_k - R_i)^2 / 2(\Delta x)^2 / R^2}$	1 - (1 - h)(1 - h)	yes,

TABLE V: Pauli-blocking treatments used in various codes compared in hox calculations.

ł

Time evolution of momentum distribution for CBOP1T5

evolve toward to Boltzmann distribution
 BUU code is better, while QMD is worse except for CoMD

2, By the Fermi energy, the collision rates are seen to converge better between the codes as the blocking becomes less important.

Pauli blocking only for the first time step

- Fluctuation in occupation probability, and can be reduced by increasing N_tp or width of wf
- a large fluctuation leading to low occupation probabilities, collisions could occur where they should be forbidden.

• BUU codes systematically give a smaller variance compared to QMD codes

Time averaged collision rate for CBOP1

- Successful collision rates for QMD are considerably higher than the BUU
- both QMD and BUU can not reach the theoretical limits

Summary and outlook

1, collision probabilities are well under control, after eliminating repeated collisions between the same pair of particles

2, blocking factor is subject to fluctuations which destroy the fermionic character of a system

3, fluctuation are physical in heavy ion collisions and lead to observable effects. Thus they should not be arbitrarily suppressed.
The question of how to control the fluctuation in transport theories remains an open one.

• HW2 for BOX simulations, Mean field propagation, fluctuations, are on going

Maria Colonna's talk

• HW3 for BOX simulations, pion productions, are on going

Akira Ono's talk

Thanks for your attention!