

Simone Valdré

Grand Accélérateur National d'Ions Lourds

Recent results from the ISOFAZIA experiment

Nusym 2017

GANIL, Maison d'hôtes September 7th, 2017

Introduction	Apparatus	Physics case	Results	Conclusions
•	00000	000	00000000	00

ISOFAZIA experiment at LNS

Aim of this work

Study of 80 Kr + 40,48 Ca reactions at 35 MeV/u

- Multifragmentation in central collisions
- Quasi-projectile dynamical fission
- Isospin transport effects in semi-peripheral collisions

G. Pastore *et al.*, Nuovo Cimento C **39**, 383 (2016)
G. Pastore, PhD Thesis (2017)

 Introduction
 Apparatus
 Physics case
 Results
 Conclusions

 •
 00000
 000
 000000000
 00

ISOFAZIA experiment at LNS

Aim of this work

Study of 80 Kr + 40,48 Ca reactions at 35 MeV/u

- Multifragmentation in central collisions
- Quasi-projectile dynamical fission
- Isospin transport effects in semi-peripheral collisions

Outline

• Experimental apparatus: FAZIA @ LNS

G. Pastore *et al.*, Nuovo Cimento C **39**, 383 (2016)
G. Pastore, PhD Thesis (2017)

 Introduction
 Apparatus
 Physics case
 Results
 Conclusions

 •
 00000
 000
 000000000
 00

ISOFAZIA experiment at LNS

Aim of this work

Study of 80 Kr + 40,48 Ca reactions at 35 MeV/u

- Multifragmentation in central collisions
- Quasi-projectile dynamical fission
- Isospin transport effects in semi-peripheral collisions

Outline

- Experimental apparatus: FAZIA @ LNS
- Isospin transport and models

G. Pastore et al., Nuovo Cimento C 39, 383 (2016)

G. Pastore, PhD Thesis (2017)

 Introduction
 Apparatus
 Physics case
 Results
 Conclusions

 •
 00000
 000
 000000000
 00

ISOFAZIA experiment at LNS

Aim of this work

Study of 80 Kr + 40,48 Ca reactions at 35 MeV/u

- Multifragmentation in central collisions
- Quasi-projectile dynamical fission
- Isospin transport effects in semi-peripheral collisions

Outline

- Experimental apparatus: FAZIA @ LNS
- Isospin transport and models
- Results and conclusions

G. Pastore et al., Nuovo Cimento C 39, 383 (2016)

G. Pastore, PhD Thesis (2017)

Introduction	Apparatus	Physics case	Results	Conclusions
0	0000	000	00000000	00
	LNC			
	LINS			

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction O	Apparatus •0000	Physics case	Results 000000000	Conclusions
FAZIA @	LNS			

The telescope stages

- 300 μm reverse-mounted Si detector;
- ② 500 µm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction	Apparatus	Physics case	Results	Conclusions
O	•0000		00000000	00
FAZIA @	LNS			

The telescope stages

- 300 μm reverse-mounted Si detector;
- 500 μm reverse-mounted Si detector;
- I0 cm Csl(Tl) cristal read by a photodiode.

To achieve the best possible energy resolution and A and Z identification Si detectors come from a nTD ingot cut at random angle to avoid channeling effects.

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000		00000000	00
The FAZIA	block			

2 telescopes are connected to a FEE card.

Introduction O	Apparatus 0000	Physics case	Results 00000000	Conclusions
The FA7I	A block			

8 FEE cards are connected to a block card via a back plane.

 Introduction
 Apparatus
 Physics case
 Results
 Conclusions

 o
 o
 o
 o
 o

Block is mounted on a copper base in which water flows to provide cooling

Introduction	Apparatus	Physics case	Results	Conclusions
0	0000	000	00000000	00
The EATI	Ablack			
I NE FAZI				

up to 36 block cards are connected to a regional board via a full duplex 3 Gb/s optical link

Introduction	Apparatus	Physics case	Results	Conclusions		
	00000	000	00000000	00		
FA7IA innovative features						

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source

Introduction O	Apparatus 00000	Physics case	Results 00000000	Conclusions
FA7IA in	novative feat	ures		

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source
- Modularity of the array
 - FAZIA blocks can be arranged into many setups
 - CENTRUM module for coupling with other apparatuses

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source
- Modularity of the array
 - FAZIA blocks can be arranged into many setups
 - CENTRUM module for coupling with other apparatuses
- Low identification thresholds thanks to **PSA**:
 - ullet charge identification from $\sim 2\,{\rm MeV/u}$ (for Z=6)
 - isotopic discrimination from $\sim 5 \, {\rm MeV/u}$ (for Z=6)

- FAZIA implements **compact electronics** that permit to do on-line analysis just next the detectors
 - minimization of signal distortion
 - data reduction at the source
- Modularity of the array
 - FAZIA blocks can be arranged into many setups
 - CENTRUM module for coupling with other apparatuses
- Low identification thresholds thanks to **PSA**:
 - $\bullet\,$ charge identification from $\sim 2\,{\rm MeV/u}$ (for Z=6)
 - isotopic discrimination from $\sim 5\,{\rm MeV/u}$ (for Z=6)
- $\bullet\,$ Despite its compact design, the FAZIA block has a good energy resolution and isotopic discrimination up to $Z\sim25$

View from above

Introduction

Apparatus 00000 Physics case

Results

Conclusions

ISOFAZIA setup

Introduction O	Apparatus 00000	Physics case	Results 00000000	Conclusions
ISOFAZIA	data proces	sing		

Acquisition

Raw data

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	●00	00000000	00
Physics ca	ase			

Asymmetric nuclear matter Equation of State (*asy*EoS)

• Symmetry energy term depending on proton and neutron densities:

$$\frac{E}{A}(\rho,\delta) = \frac{E}{A}(\rho,0) + \frac{E_{\text{sym}}}{A}(\rho)\delta^2 + \mathcal{O}\Big(\delta^4\Big)$$

Isospin parameter

$$\delta = \frac{(\rho_n - \rho_p)}{\rho} \sim \frac{N - Z}{A}$$

$E_{ m sym}$ behaviour is known only near ho_0

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	●○○	00000000	00
Physics case				

 $E_{
m sym}$ behaviour is known only near ho_0

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	o●○	000000000	00
Isospin tr	ansport			

Isospin diffusion

- Projectile and target isospins tend to **equilibrate** during interaction
- Isospin diffusion favoured by an asy-soft EoS parametrization

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	o●○	00000000	
Isospin tr	ansport			

Isospin drift

- Neutrons tend to migrate toward low density regions (neck)
- Isospin drift favoured by an asy-stiff EoS parametrization

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	o●○	00000000	
Isospin tr	ansport			

Isospin drift

- Neutrons tend to migrate toward low density regions (neck)
- Isospin drift favoured by an asy-stiff EoS parametrization

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	○○●	00000000	
Reaction s	imulation			

Antisymmetrized Molecular Dynamics (AMD)

It considers the evolution via the equations of motion of **single nucleons**, modeled as gaussian packets under the effect of a mean field and two-body interactions

A. Ono et al., Phys. Rev. C 59, 853 (1999)

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	○○●	00000000	
Reaction s	imulation			

Antisymmetrized Molecular Dynamics (AMD)

It considers the evolution via the equations of motion of **single nucleons**, modeled as gaussian packets under the effect of a mean field and two-body interactions

GEMINI++ code

Used as **afterburner** to produce secondary particle distributions from primary fragments

A. Ono *et al.*, Phys. Rev. C **59**, 853 (1999) R. J. Charity, Phys. Rev. C **82**, 014610 (2010)

ISOFAZIA model data processing

ISOFAZIA model data processing

 Introduction
 Apparatus
 Physics case
 Results
 Conclusions

 0
 00000
 000
 00
 00
 00

ISOFAZIA model data processing

M. D'Agostino et al., Nucl. Phys. A 861, 47 (2011)

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000		00●000000	00
Analysis —	event selec	ction		

Exp. data

Exp. data

AMD + GEMINI++

• Correlations are normalized to the same integral (1)

• $M \ge 2$ condition has been imposed

Exp. data

AMD + GEMINI++

- Correlations are normalized to the same integral (1)
- $M \ge 2$ condition has been imposed
- AMD produces less central collisions than experimental data

Exp. data ⁸⁰Kr + ⁴⁸Ca ^{שיי 40} א 10⁻³ 35 DIC 30 25 10-4 20 15 10Ē 10-5 N 35 10⁻³ V_{cm}, central 30 25 10-4 V_{proj} 20 15 10 10⁻⁵ 0^t 120 140 v^(lab) [mm/ns] 20 40 60 80 100

AMD + GEMINI++

Analysis	icocnin tro	nonort		
0	00000	000	00000000	00
Introduction	Apparatus	Physics case	Results	Conclusions

Analysis — isospin transport

To study isospin transport we'll focus on the DIC channel

Further selections

In addition to the $Z_{\rm tot}$ vs $\vartheta_{\rm flow}$ cut we impose:

QP-only One fragment (QP) with $Z \geq 12$ and $v_z^{(
m cm)} > 0$; no other fragments with $Z \geq 5$

 $egin{aligned} { ext{QP+QT}} & ext{One fragment (QP) with } Z \geq 12 ext{ and } v_{z}^{(ext{cm})} > 0; \\ & ext{one fragment (QT) with } Z \geq 5 ext{ and } artheta_{ ext{rel}}^{(ext{cm})} > 160^{\circ} \end{aligned}$

Analysia	icocnin tro	n an awt		
0	00000	000	00000000	00
Introduction	Apparatus	Physics case	Results	Conclusions

Analysis — isospin transport

To study isospin transport we'll focus on the DIC channel

Further selections

In addition to the Z_{tot} vs ϑ_{flow} cut we impose:

QP-only One fragment (QP) with $Z \geq 12$ and $v_z^{(
m cm)} > 0;$ no other fragments with $Z \geq 5$

QP+QT One fragment (QP) with $Z \ge 12$ and $v_z^{(cm)} > 0$; one fragment (QT) with $Z \ge 5$ and $\vartheta_{rel}^{(cm)} > 160^\circ$

> **Isospin diffusion** could be evidenced by QP isotopic composition

Amplusia	the second second	and a sub-		
0	00000	000	00000000	00
Introduction	Apparatus	Physics case	Results	Conclusions

Analysis — isospin transport

To study isospin transport we'll focus on the DIC channel

Further selections

In addition to the $Z_{\rm tot}$ vs $\vartheta_{\rm flow}$ cut we impose:

QP-only One fragment (QP) with $Z \geq 12$ and $v_z^{(
m cm)} > 0;$ no other fragments with $Z \geq 5$

 $\begin{array}{l} {\rm QP+QT} \ \, {\rm One \ fragment} \ \, ({\rm QP}) \ \, {\rm with} \ \, Z \geq 12 \ \, {\rm and} \ \, v_z^{\rm (cm)} > 0; \\ {\rm one \ fragment} \ \, ({\rm QT}) \ \, {\rm with} \ \, Z \geq 5 \ \, {\rm and} \ \, \vartheta_{\rm rel}^{\rm (cm)} > 160^\circ \end{array}$

Isospin diffusion could be evidenced by QP isotopic composition

Isospin drift could be evidenced by neck emission isotopic composition

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	000	00000●000	

Analysis — isospin diffusion

Introduction	Apparatus	Physics case	Results	Conclusions
0	00000	000	000000000	00
		- ·		

Analysis — isospin diffusion

Introduction	Apparatus	Physics case	Results	Conclusions
0	00000	000	000000000	00
Analycic -	— icocnin dri	f+		

Introduction	Apparatus	Physics case	Results	Conclusions
0	00000	000	0000000000	00
Applycic	icocnin dri	f+		

Analysis — isospin drift

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000	000	0000000●0	00
A 1 -	100 A 100			

Analysis — neck emission

0	00000	000	000000000	00
Analysis	nock omice	sion		

Analysis — neck emission

0	00000	000	00000000	00
Analysis -	- nock omise	sion		

• The neck emission related observables are better reproduced by an **asystiff** EoS

- The neck emission related observables are better reproduced by an **asystiff** EoS
- Agreement with previous results from CHIMERA experiment

E. De Filippo et al., Phys. Rev. C 86, 014610 (2012)

Introduction 0	Apparatus 00000	Physics case	Results 00000000	Conclusions
Conclusions	and remarks			

- \bullet The reactions $^{80}\text{Kr}+^{40,48}\text{Ca}$ at 35 MeV/u have been studied:
 - DIC channel described in this talk
 - work in progress on more central collisions

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000		000000000	●○
Conclusions	and remar	ks		

- $\bullet\,$ The reactions $^{80}\text{Kr}+^{40,48}\text{Ca}$ at 35 MeV/u have been studied:
 - DIC channel described in this talk
 - work in progress on more central collisions
- FAZIA array allowed us to obtain:
 - charge identification of all detected products
 - isotopic discrimination up to $Z \sim 25$ (even for QT!)

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000		000000000	●0
Conclusions	and remar	ks		

- $\bullet\,$ The reactions $^{80}\text{Kr}+^{40,48}\text{Ca}$ at 35 MeV/u have been studied:
 - DIC channel described in this talk
 - work in progress on more central collisions
- FAZIA array allowed us to obtain:
 - charge identification of all detected products
 - isotopic discrimination up to $Z \sim 25$ (even for QT!)
- Comparison of isospin related observables with AMD code:
 - possible evidence of asystiff behaviour of EoS

Introduction	Apparatus	Physics case	Results	Conclusions
O	00000		000000000	●0
Conclusions	and remar	ks		

- $\bullet\,$ The reactions $^{80}\text{Kr}+^{40,48}\text{Ca}$ at 35 MeV/u have been studied:
 - DIC channel described in this talk
 - work in progress on more central collisions
- FAZIA array allowed us to obtain:
 - charge identification of all detected products
 - isotopic discrimination up to $Z \sim 25$ (even for QT!)
- Comparison of isospin related observables with AMD code:
 - possible evidence of asystiff behaviour of EoS
- We are still running AMD model code to have more simulated events and give more significance to our results

Introduction Apparatus Physics case Results Conclusions 0 0000 000 000 00000000 00

FAZIA collaboration

Thanks for your attention

Backup Slides

Backup Slides

Backup Slides

