Classical vs quantal effects in equilibrium and non-equilibrium dynamics

H. Zheng, S. Burrello, M. Colonna, D. Lacroix, G. Scamps

INFN - Laboratori Nazionali del Sud (Catania)

Outline

♦ Introduction

Operation of the second state of the s

Oynamical dipole in ¹⁵²Sm+⁴⁰Ca at 11 MeV/A (experimental case), TDHF, Vlasov, BNV

Conclusions

Dynamics of many-body systems

Main ingredients:

 Residual interaction
Effective interaction: Skyrme interaction (self-consistent mean-field)

Study approaches:

- Semi-classical approach: Vlasov, BNV, MD, SMF...
- ◆ Quantal approach: **TDHF**, HF+RPA ...

Objects

Experiment:

- New collective excitations
- Competition between reaction mechanisms
- Charge equilibration
- Isotopic features of emitted particles

Charge equilibration in fusion and D.I. collisio

AS

Initial Dipole D(t) : bremss. dipole radiation CN: stat. GDR

If $N_1/Z_1 \neq N_2/Z_2$ \rightarrow Relative motion of neutron and proton centers of mass

Simenel et al, PRC 76, 024609 (2007)

Dynamical dipole (DD) emission

Bremsstrahlung: Quantitative estimation

 $\frac{dP}{dE_{\gamma}} = \frac{2e^2}{3\pi\hbar c^3 E_{\gamma}} \left| D''(\omega) \right|^2$

Damped harmonic oscillator:

$$|D''(\omega)|^{2} = \frac{\left(\omega_{0}^{2} + 1/\tau^{2}\right)^{2} D(t_{0})^{2}}{(\omega - \omega_{0})^{2} + 1/\tau^{2}}$$

Energy-integrated yield

 $P_v \sim \omega_0^3 \tau D(t_0)^2$

V.Baran, D.M.Brink, M.Colonna, M.Di Toro, PRL.87 (2001) V. Baran et al., PRC 79, 021603®, (2009)

Dynamical dipole emission

- Restoring force given by the symmetry potential
- Socillations are inside an elongated system: smaller frequency with respect to GDR
- γ emission probability sensitive to the damping τ n-n cross section

$$P_{\gamma} \sim \omega_0^3 \tau D(t_0)^2$$

> Signal is enhanced in system with a large initial dipole moment $D(t_0)$

ω

More refined calculations: a multi-dimensional analysis

Only symm. energy parametrizations which cross at normal density were considered in our previous calculations (fixed J)

C.Rizzo et al., PRC 83, 014604 (2011)

$$E_{sym}(\rho) = S_0 + L \frac{\rho - \rho_0}{3\rho_0} + \dots$$

or J

 \circ Explore the sensitivity to both J and L

Explore the sensitivity to Nucleon-Nucleon cross section

Look at.

- Dynamical Dipole
- pre-equilibrium particle emission

The pre-equilibrium dipole strength in ¹³²Sn+⁵⁸Ni, 10 Me V/A

H. Zheng et al. PLB 769, 424, 2017

DD is sensitive to the E_{sym} below the normal density and m^*

The pre-equilibrium dipole strength in ¹³²Sn+⁵⁸Ni, 10 Me V/A

H. Zheng et al. PLB 769, 424, 2017

An addition collision probability f_{cs} to the free nn cross section

The gamma multiplicity in ¹⁵²Sm+⁴⁰Ca, 11 MeV/A

C. Parascandolo et al., PRC.93, 044619 (2016), D. Pierroutsakou's talk

¹⁵²Sm is prolate

No.	β_2	β_4	reference
1	0.287 ± 0.003	$0.070 {\pm} 0.003$	PRL 28, 1711 (1972)
			PRC 13, 1083 (1976)
2	0.286 ± 0.002	$0.092{\pm}0.002$	PRL 38, 584 (1977)
3	0.276 ± 0.004	$0.089 {\pm} 0.014$	PRC 15, 921 (1977)
4	0.252 ± 0.004	$0.072 {\pm} 0.013$	PRC 15, 921 (1977)
5	0.250, 0.261, 0.260, 0.232, 0.22 (different methods)		PLB 61, 29 (1976)

I am deformed and prolate

HF, the deformation of the gs is automatically obtained

The collision configurations in ¹⁵²Sm+⁴⁰Ca

Introduce the deformed configuration in semi-classical model

$$\frac{x^2 + y^2}{a^2} + \frac{z^2}{c^2} = 1$$
$$a = R(1 - s)$$

c = R(1+s)

Comparing the quadruple moment: $\beta_2 \approx 2.11s$

R.W. Hasse, W.D. Myers, Geometrical Relationships of Macroscopic Nuclear Physics, 1988

To do list

Model	collision	Quantum effect	¹⁵² Sm shape
TDHF	X	\checkmark	spherical
TDHF	X	\checkmark	prolate
Vlasov	X	X	spherical
Vlasov	X	X	prolate
BNV	\checkmark	X	spherical
BNV	\checkmark	Х	prolate

Comparison between TDHF and Vlasov

- Central collisions, volume involved, energy level structure is not important
- Peripheral collisions, surface involved, energy level structur e becomes important

Comparison between TDHF and Vlasov

- 1) Central collisions, volume involved, deformation and energy level structure are not important
- Peripheral collisions, surface involved, deformation and ene rgy level structure become important

Comparison between TDHF and Vlasov

- 1) Collisions are needed (BNV)
- 2) Deformation is needed
- 3) The energy level structure contribution should be taken into account (normalize VLASOV to TDHF)

Conclusions

Low energy collisions involving n-rich systems: A way to constrain symmetry energy and two-body correlation effects

- The DD strength reflects the symmetry energy at the crossing density of the SAMi-J interactions (as also observed for the GDR)
- The DD strength is sensitive to the n-n cross section
- The deformation of the nuclei plays an important role in the DD

A possible way to take into account the quantum effects and collisions in the DD is proposed as the preliminary results